Pixel-wise segmentation of cells in digitized Pap smear images

被引:0
|
作者
Harangi, Balazs [1 ]
Bogacsovics, Gergo [1 ]
Toth, Janos [1 ]
Kovacs, Ilona [2 ]
Dani, Erzsebet [3 ]
Hajdu, Andras [1 ]
机构
[1] Univ Debrecen, Fac Informat, Dept Data Sci & Visualizat, Debrecen, Hungary
[2] Univ Debrecen, Kenezy Gyula Hosp & Clin, Dept Pathol, Debrecen, Hungary
[3] Univ Debrecen, Fac Humanities, Dept Lib & Informat Sci, Debrecen, Hungary
关键词
OPTIMIZATION;
D O I
10.1038/s41597-024-03566-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A simple and cheap way to recognize cervical cancer is using light microscopic analysis of Pap smear images. Training artificial intelligence-based systems becomes possible in this domain, e.g., to follow the European recommendation to screen negative smears to reduce false negative cases. The first step for such a process is segmenting the cells. A large and manually segmented dataset is required for this task, which can be used to train deep learning-based solutions. We describe a corresponding dataset with accurate manual segmentations for the enclosed cells. Altogether, the APACS23 (Annotated PAp smear images for Cell Segmentation 2023) dataset contains about 37 000 manually segmented cells and is separated into dedicated training and test parts, which could be used for an official benchmark of scientific investigations or a grand challenge.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Pixel-wise video stabilization
    Zhongqiang Wang
    Hua Huang
    Multimedia Tools and Applications, 2016, 75 : 15939 - 15954
  • [22] Decoupled pixel-wise correction for abdominal multi-organ segmentation
    Yu, Xiangchun
    Ding, Longjun
    Zhang, Dingwen
    Wu, Jianqing
    Liang, Miaomiao
    Zheng, Jian
    Pang, Wei
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (04)
  • [23] Pixel-wise confidence estimation for segmentation in Bayesian Convolutional Neural Networks
    Rémi Martin
    Luc Duong
    Machine Vision and Applications, 2023, 34
  • [24] PAT: Pixel-wise Adaptive Training for long-tailed segmentation
    Do, Khoi
    Nguyen, Minh-Duong
    Tran, Nguyen H.
    Nguyen, Viet Dung
    PATTERN RECOGNITION LETTERS, 2025, 192
  • [25] Blazingly Fast Video Object Segmentation with Pixel-Wise Metric Learning
    Chen, Yuhua
    Pont-Tuset, Jordi
    Montes, Alberto
    Van Gool, Luc
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1189 - 1198
  • [26] Deep Convolutional Pixel-wise Labeling for Skin Lesion Image Segmentation
    Youssef, Ali
    Bloisi, Domenico D.
    Muscio, Mario
    Pennisi, Andrea
    Nardi, Daniele
    Facchiano, Antonio
    2018 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2018, : 536 - 541
  • [27] Pixel-Wise Contrastive Distillation
    Huang, Junqiang
    Guo, Zichao
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 16313 - 16323
  • [28] Pixel-wise confidence estimation for segmentation in Bayesian Convolutional Neural Networks
    Martin, Remi
    Duong, Luc
    MACHINE VISION AND APPLICATIONS, 2023, 34 (01)
  • [29] Virtual staining for pixel-wise and quantitative analysis of single cell images
    Yilmaz, Abdurrahim
    Aydin, Tuelay
    Varol, Rahmetullah
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [30] Segmentation of Hematoxylin-Eosin stained breast cancer histopathological images based on pixel-wise SVM classifier
    QU AiPing
    CHEN JiaMei
    WANG LinWei
    YUAN JingPing
    YANG Fang
    XIANG QingMing
    MASKEY Ninu
    YANG GuiFang
    LIU Juan
    LI Yan
    Science China(Information Sciences), 2015, 58 (09) : 56 - 68