Pixel-wise segmentation of cells in digitized Pap smear images

被引:0
|
作者
Harangi, Balazs [1 ]
Bogacsovics, Gergo [1 ]
Toth, Janos [1 ]
Kovacs, Ilona [2 ]
Dani, Erzsebet [3 ]
Hajdu, Andras [1 ]
机构
[1] Univ Debrecen, Fac Informat, Dept Data Sci & Visualizat, Debrecen, Hungary
[2] Univ Debrecen, Kenezy Gyula Hosp & Clin, Dept Pathol, Debrecen, Hungary
[3] Univ Debrecen, Fac Humanities, Dept Lib & Informat Sci, Debrecen, Hungary
关键词
OPTIMIZATION;
D O I
10.1038/s41597-024-03566-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A simple and cheap way to recognize cervical cancer is using light microscopic analysis of Pap smear images. Training artificial intelligence-based systems becomes possible in this domain, e.g., to follow the European recommendation to screen negative smears to reduce false negative cases. The first step for such a process is segmenting the cells. A large and manually segmented dataset is required for this task, which can be used to train deep learning-based solutions. We describe a corresponding dataset with accurate manual segmentations for the enclosed cells. Altogether, the APACS23 (Annotated PAp smear images for Cell Segmentation 2023) dataset contains about 37 000 manually segmented cells and is separated into dedicated training and test parts, which could be used for an official benchmark of scientific investigations or a grand challenge.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Automatic segmentation of Chaetoceros microscopic images via pixel-wise classification
    Qiu, Xinxin
    Tang, Ning
    Zheng, Haiyong
    Ji, Guangrong
    Qiao, Xiaoyan
    OCEANS 2016 - SHANGHAI, 2016,
  • [2] Pixel-wise Segmentation of Right Ventricle of Heart
    Dang, Yaman
    Anand, Deepak
    Sethi, Amit
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 1797 - 1802
  • [3] PIXEL-WISE NEURAL CELL INSTANCE SEGMENTATION
    Yi, Jingru
    Wu, Pengxiang
    Hoeppner, Daniel J.
    Metaxas, Dimitris
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 373 - 377
  • [4] ApesNet: A Pixel-wise Efficient Segmentation Network
    Wu, Chunpeng
    Cheng, Hsin-Pai
    Li, Sicheng
    Li, Hai
    Chen, Yiran
    14TH ACM/IEEE SYMPOSIUM ON EMBEDDED SYSTEMS FOR REAL-TIME MULTIMEDIA (ESTIMEDIA 2016), 2016, : 2 - 8
  • [5] Pixel-Wise Classification in Hippocampus Histological Images
    Vizcaino, Alfonso
    Sanchez-Cruz, Hermilo
    Sossa, Humberto
    Quintanar, J. Luis
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [6] Pixel-Wise Noise Level Estimation for Images
    Amano, Yusuke
    Ohashi, Gosuke
    Shimodaira, Yoshifumi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (08) : 1821 - 1823
  • [7] Unsupervised pixel-wise classification for Chaetoceros image segmentation
    Tang, Ning
    Zhou, Fei
    Gu, Zhaorui
    Zheng, Haiyong
    Yu, Zhibin
    Zheng, Bing
    NEUROCOMPUTING, 2018, 318 : 261 - 270
  • [8] PIXEL-WISE FAILURE PREDICTION FOR SEMANTIC VIDEO SEGMENTATION
    Kuhn, Christopher B.
    Hofbauer, Markus
    Xu, Ziqin
    Petrovic, Goran
    Steinbach, Eckehard
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 614 - 618
  • [9] Object Segmentation Using Pixel-Wise Adversarial Loss
    Durall, Ricard
    Pfreundt, Franz-Josef
    Koethe, Ullrich
    Keuper, Janis
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 303 - 316
  • [10] Pixel-Wise Motion Segmentation for SLAM in Dynamic Environments
    Hempel, Thorsten
    Al-Hamadi, Ayoub
    IEEE ACCESS, 2020, 8 : 164521 - 164528