AI-enabled ECG index for predicting left ventricular dysfunction in patients with ST-segment elevation myocardial infarction

被引:0
作者
Jeon, Ki-Hyun [1 ,2 ]
Lee, Hak Seung [3 ,4 ]
Kang, Sora [3 ,4 ]
Jang, Jong-Hwan [3 ,4 ]
Jo, Yong-Yeon [3 ,4 ]
Son, Jeong Min [3 ,4 ]
Lee, Min Sung [3 ,4 ]
Kwon, Joon-myoung [3 ,4 ]
Kwun, Ju-Seung [1 ,2 ]
Cho, Hyoung-Won [1 ,2 ]
Kang, Si-Hyuck [1 ,2 ]
Lee, Wonjae [1 ,2 ]
Yoon, Chang-Hwan [1 ,2 ]
Suh, Jung-Won [1 ,2 ]
Youn, Tae-Jin [1 ,2 ]
Chae, In-Ho [1 ,2 ]
机构
[1] Seoul Natl Univ, Bundang Hosp, Dept Internal Med, Coll Med, Seongnam, South Korea
[2] Seoul Natl Univ, Dept Cardiol, Bundang Hosp, Seongnam, South Korea
[3] Med AI Co Ltd, Seoul, South Korea
[4] Sejong Med Res Inst, Artificial Intelligence & Big Data Res Ctr, Bucheon, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
ST-segment elevation myocardial infarction; Heart failure; Artificial intelligence; Electrocardiogram; REPERFUSION; RESOLUTION; THERAPIES; CORONARY;
D O I
10.1038/s41598-024-67532-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrocardiogram (ECG) changes after primary percutaneous coronary intervention (PCI) in ST-segment elevation myocardial infarction (STEMI) patients are associated with prognosis. This study investigated the feasibility of predicting left ventricular (LV) dysfunction in STEMI patients using an artificial intelligence (AI)-enabled ECG algorithm developed to diagnose STEMI. Serial ECGs from 637 STEMI patients were analyzed with the AI algorithm, which quantified the probability of STEMI at various time points. The time points included pre-PCI, immediately post-PCI, 6 h post-PCI, 24 h post-PCI, at discharge, and one-month post-PCI. The prevalence of LV dysfunction was significantly associated with the AI-derived probability index. A high probability index was an independent predictor of LV dysfunction, with higher cardiac death and heart failure hospitalization rates observed in patients with higher indices. The study demonstrates that the AI-enabled ECG index effectively quantifies ECG changes post-PCI and serves as a digital biomarker capable of predicting post-STEMI LV dysfunction, heart failure, and mortality. These findings suggest that AI-enabled ECG analysis can be a valuable tool in the early identification of high-risk patients, enabling timely and targeted interventions to improve clinical outcomes in STEMI patients.
引用
收藏
页数:9
相关论文
共 28 条
  • [1] Cardiac MR assessment of microvascular obstruction
    Abbas, A.
    Matthews, G. H.
    Brown, I. W.
    Shambrook, J. S.
    Peebles, C. R.
    Harden, S. P.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2015, 88 (1047)
  • [2] Standardized Definitions for Evaluation of Heart Failure Therapies: Scientific Expert Panel From the Heart Failure Collaboratory and Academic Research Consortium
    Abraham, William T.
    Psotka, Mitchell A.
    Fiuzat, Mona
    Filippatos, Gerasimos
    Lindenfeld, JoAnn
    Mehran, Roxana
    Ambardekar, Amrut V.
    Carson, Peter E.
    Jacob, Richard
    Januzzi, James L., Jr.
    Konstam, Marvin A.
    Krucoff, Mitchell W.
    Lewis, Eldrin F.
    Piccini, Jonathan P.
    Solomon, Scott D.
    Stockbridge, Norman
    Teerlink, John R.
    Unger, Ellis F.
    Zeitler, Emily P.
    Anker, Stefan D.
    O'Connor, Christopher M.
    [J]. JACC-HEART FAILURE, 2020, 8 (12) : 961 - 972
  • [3] Application of artificial intelligence to the electrocardiogram
    Attia, Zachi, I
    Harmon, David M.
    Behr, Elijah R.
    Friedman, Paul A.
    [J]. EUROPEAN HEART JOURNAL, 2021, 42 (46) : 4717 - +
  • [4] Increasing myocardial edema is associated with greater microvascular obstruction in ST-segment elevation myocardial infarction
    Bonfig, Nicole L.
    Soukup, Chase R.
    Shah, Ananya A.
    Olet, Susan
    Davidson, Sarah J.
    Schmidt, Christian W.
    Peterson, Rose
    Henry, Timothy D.
    Traverse, Jay H.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2022, 323 (04): : H818 - H824
  • [5] Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography
    Cho, Younghoon
    Kwon, Joon-myoung
    Kim, Kyung-Hee
    Medina-Inojosa, Jose R.
    Jeon, Ki-Hyun
    Cho, Soohyun
    Lee, Soo Youn
    Park, Jinsik
    Oh, Byung-Hee
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] ST segment resolution as a tool for assessing the efficacy of reperfusion therapy
    de Lemos, JA
    Braunwald, E
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2001, 38 (05) : 1283 - 1294
  • [7] Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction - Every minute of delay counts
    De Luca, G
    Suryapranata, H
    Ottervanger, JP
    Antman, EM
    [J]. CIRCULATION, 2004, 109 (10) : 1223 - 1225
  • [8] Relationship between ST-segment resolution and anterior infarct size after primary percutaneous coronary intervention: analysis from the INFUSE-AMI trial
    Dizon, Jose M.
    Brener, Sorin J.
    Maehara, Akiko
    Witzenbichler, Bernard
    Biviano, Angelo
    Godlewski, Jacek
    Parise, Helen
    Dambrink, Jan-Henk
    Mehran, Roxana
    Gibson, C. Michael
    Stone, Gregg W.
    [J]. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE, 2014, 3 (01) : 78 - 83
  • [9] ST-segment resolution as a marker for severe myocardial fibrosis in ST-segment elevation myocardial infarction
    Dong, Qian
    Wen, Xuesong
    Chang, Guanglei
    Xia, Rui
    Wang, Sihang
    Yang, Yunjing
    Tao, Yi
    Zhang, Dongying
    Qin, Shu
    [J]. BMC CARDIOVASCULAR DISORDERS, 2021, 21 (01)
  • [10] Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies
    Frantz, Stefan
    Hundertmark, Moritz Jens
    Schulz-Menger, Jeanette
    Bengel, Frank Michael
    Bauersachs, Johann
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 (27) : 2549 - +