A conditioned feature reconstruction network for few-shot classification

被引:3
|
作者
Song, Bin [1 ,2 ]
Zhu, Hong [1 ]
Bi, Yuandong [1 ]
机构
[1] Xian Univ Technol, Sch Automat & Informat Engn, 5 South Jinhua Rd, Xian 710048, Shaanxi, Peoples R China
[2] China Aerosp Sci & Ind Corp, Def Technol Second Acad Inst 706, Missile Control Div, 52 Yongding Rd, Beijing 100854, Peoples R China
关键词
Metric-based approaches; Feature reconstruction; Few-shot classification; Conditional priors;
D O I
10.1007/s10489-024-05516-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot classification is one of the most daunting challenges in deep learning. The complexities of this task arise from the fact that category targets are often embedded within intricate and diverse background pixels, resulting in inconspicuous category features. Moreover, obtaining common category characteristics from a limited number of samples is difficult. Compounding the issue, models encounters categories that they have never seen before, rendering the prior guarantee of interclass variance infeasible. To address these dilemmas, this paper leverages the apriori conditioned information of few-shot tasks and introduces a Conditioned Feature Reconstruction Network (CFRN). The CFRN employs prototype reconstruction to minimize the prototype similarity among different classes and query reconstruction to maximize the similarity of (query, prototype) feature pairs. This approach increases the interclass variance while decreasing the intraclass variance, thereby enhancing separability and improving the saliency of the target features. An experimental validation demonstrates the effectiveness of the CFRN, which obtains state-of-the-art results on the mini-ImageNet, tiered-ImageNet, and CUB datasets.
引用
收藏
页码:6592 / 6605
页数:14
相关论文
共 50 条
  • [41] Local feature graph neural network for few-shot learning
    Weng P.
    Dong S.
    Ren L.
    Zou K.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (04) : 4343 - 4354
  • [42] Hybrid feature enhancement network for few-shot semantic segmentation
    Min, Hai
    Zhang, Yemao
    Zhao, Yang
    Jia, Wei
    Lei, Yingke
    Fan, Chunxiao
    PATTERN RECOGNITION, 2023, 137
  • [43] Multi-scale feature network for few-shot learning
    Mengya Han
    Ronggui Wang
    Juan Yang
    Lixia Xue
    Min Hu
    Multimedia Tools and Applications, 2020, 79 : 11617 - 11637
  • [44] Multi-scale feature network for few-shot learning
    Han, Mengya
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    Hu, Min
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (17-18) : 11617 - 11637
  • [45] Prior Guided Feature Enrichment Network for Few-Shot Segmentation
    Tian, Zhuotao
    Zhao, Hengshuang
    Shu, Michelle
    Yang, Zhicheng
    Li, Ruiyu
    Jia, Jiaya
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) : 1050 - 1065
  • [46] Spatial-Temporal Hybrid Feature Extraction Network for Few-Shot Automatic Modulation Classification
    Che, Jibin
    Wang, Li
    Bai, Xueru
    Liu, Chunheng
    Zhou, Feng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (12) : 13387 - 13392
  • [47] More diversity, less redundancy: Feature refinement network for few-shot SAR image classification
    Wang, Ziqi
    Li, Yang
    Zhang, Rui
    Wang, Jiabao
    Cui, Haoran
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [48] Efficient Feature Reconstruction via l2,1-Norm Regularization for Few-Shot Classification
    Sun, Jiaxing
    Shen, Xiaobo
    Sun, Quansen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) : 7452 - 7465
  • [49] A Feature Generator for Few-Shot Learning
    Kanagalingam, Heethanjan
    Pathmanathan, Thenukan
    Ketheeswaran, Navaneethan
    Vathanakumar, Mokeeshan
    Afham, Mohamed
    Rodrigo, Ranga
    arXiv,
  • [50] Semantic-Aware Feature Aggregation for Few-Shot Image Classification
    Hao, Fusheng
    Wu, Fuxiang
    He, Fengxiang
    Zhang, Qieshi
    Song, Chengqun
    Cheng, Jun
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 6595 - 6609