Time-domain finite element method based on arbitrary quadrilateral meshes for two-dimensional SHTE mode seismoelectric and electroseismic waves modelling

被引:2
作者
Li, Jun [1 ]
Yin, Changchun [1 ]
Liu, Yunhe [1 ]
Huang, Xianyang [1 ]
Zhang, Bo [1 ]
Ren, Xiuyan [1 ]
Su, Yang [1 ]
Wang, Luyuan [1 ]
Ma, Xinpeng [1 ]
机构
[1] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130026, Peoples R China
基金
中国国家自然科学基金;
关键词
arbitrary quadrilateral mesh; finite-element method; numerical modelling; seismoelectric and electroseismic; wave propagation; PERFECTLY MATCHED LAYER; NUMERICAL-SIMULATION; PROPAGATION; CONVERSIONS; EQUATIONS; FIELDS;
D O I
10.1111/1365-2478.13518
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A time-domain finite-element method based on an arbitrary quadrilateral mesh is proposed to simulate two dimensional seismoelectric and electroseismic waves in SHTE mode. By decoupling the electrokinetic coupling equation, we can solve seismic waves and electromagnetic waves independently. For the simulation of seismic wavefield, we utilize a more compact second-order unsplit perfectly matched layer that is easier to implement in finite-element methods. Moreover, to avoid errors caused by the quasi-static approximation, we directly solve the full-wave electromagnetic equations when simulating the electromagnetic wavefield. Our computational domain is discretized using arbitrary quadrilateral meshes, which offers possibilities in handling undulating terrain and complex anomalies in the underground. To ensure computational accuracy, we utilized biquadratic interpolation as our finite-element basis functions, which provides higher precision compared to bilinear interpolation. We validate our time-domain finite-element method by comparing its results with analytical solutions for a layered model. We also apply our algorithm to the modelling of an underground aquifer and a complex anomalous hydrocarbon reservoir under undulating terrain.
引用
收藏
页码:2419 / 2438
页数:20
相关论文
共 55 条
[1]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[2]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[4]   Measurement of the seismoelectric response from a shallow boundary [J].
Butler, KE ;
Russell, RD ;
Kepic, AW ;
Maxwell, M .
GEOPHYSICS, 1996, 61 (06) :1769-1778
[5]   Perfectly matched layers for elastodynamics: A new absorbing boundary condition [J].
Chew, WC ;
Liu, QH .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 1996, 4 (04) :341-359
[6]   Detection and localization of hydromechanical disturbances in a sandbox using the self-potential method [J].
Crespy, A. ;
Revil, A. ;
Linde, N. ;
Byrdina, S. ;
Jardani, A. ;
Boleve, A. ;
Henry, P. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2008, 113 (B1)
[7]   Seismoelectric monitoring of aquifers using local seismicity-a feasibility study [J].
Dzieran, L. ;
Thorwart, M. ;
Rabbel, W. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (02) :874-892
[8]  
Frenkel J, 1944, J PHYS-USSR, V8, P230
[9]   Numerical simulation and analysis of seismoelectromagnetic wave fields excited by a point source in layered porous media [J].
Gao Yong-Xin ;
Hu Heng-Shan .
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2009, 52 (08) :2093-2104
[10]   Simulation of seismoelectric waves using finite-difference frequency-domain method: 2-D SHTE mode [J].
Gao, Yongxin ;
Wang, Dongdong ;
Yao, Cheng ;
Guan, Wei ;
Hu, Hengshan ;
Wen, Jian ;
Zhang, Wei ;
Tong, Ping ;
Yang, Qingjie .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 216 (01) :414-438