O'Grady tenfolds as moduli spaces of sheaves

被引:1
作者
Felisetti, Camilla [1 ]
Giovenzana, Franco [2 ]
Grossi, Annalisa [2 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-B, I-41125 Modena, Italy
[2] Univ Paris Saclay, Lab Math Orsay, Rue Michel Magat, Bat 307, F-91405 Orsay, France
基金
欧洲研究理事会;
关键词
14J42; 14E07; 14J50; BIRATIONAL GEOMETRY; MONODROMY; STABILITY; TORELLI; ORDER;
D O I
10.1017/fms.2024.46
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a lattice-theoretic characterization for a manifold of $\operatorname {\mathrm {OG10}}$ type to be birational to some moduli space of (twisted) sheaves on a K3 surface. We apply it to the Li-Pertusi-Zhao variety of $\operatorname {\mathrm {OG10}}$ type associated to any smooth cubic fourfold. Moreover, we determine when a birational transformation is induced by an automorphism of the K3 surface, and we use this to classify all induced birational symplectic involutions.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the period of Lehn, Lehn, Sorger, and van Straten?s symplectic eightfold
    Addington, Nicolas
    Giovenzana, Franco
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2023, 63 (01) : 71 - 86
  • [2] Addington N, 2016, MATH RES LETT, V23, P1
  • [3] HODGE THEORY AND DERIVED CATEGORIES OF CUBIC FOURFOLDS
    Addington, Nicolas
    Thomas, Richard
    [J]. DUKE MATHEMATICAL JOURNAL, 2014, 163 (10) : 1885 - 1927
  • [4] BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755
  • [5] Bertini V, 2024, Arxiv, DOI arXiv:2401.13632
  • [6] Billi S., Non-symplectic automorphisms of prime order of O'Grady's tenfolds and cubic fourfolds'
  • [7] Brandhorst S, 2020, Arxiv, DOI arXiv:1912.07119
  • [8] Stability conditions on K3 surfaces
    Bridgeland, Tom
    [J]. DUKE MATHEMATICAL JOURNAL, 2008, 141 (02) : 241 - 291
  • [9] Daniel H., 2006, Moduli Spaces and Arithmetic Geometry, V45, P21
  • [10] HITCHIN FIBRATIONS, ABELIAN SURFACES, AND THE P=W CONJECTURE
    de Cataldo, Mark Andrea
    Maulik, Davesh
    Shen, Junliang
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, : 911 - 953