Transfer learning guided discovery of efficient perovskite oxide for alkaline water oxidation

被引:23
作者
Jiang, Chang [1 ]
He, Hongyuan [2 ]
Guo, Hongquan [1 ]
Zhang, Xiaoxin [1 ]
Han, Qingyang [1 ]
Weng, Yanhong [3 ]
Fu, Xianzhu [3 ]
Zhu, Yinlong [4 ]
Yan, Ning [5 ]
Tu, Xin [2 ]
Sun, Yifei [1 ,6 ,7 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen, Peoples R China
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool, England
[3] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Res Ctr Interfacial Engn Funct Mat, Shenzhen Key Lab Energy Electrocatalyt Mat, Shenzhen, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Inst Frontier Sci, Nanjing, Peoples R China
[5] Wuhan Univ, Sch Phys & Technol, Wuhan, Peoples R China
[6] Xiamen Univ, State Key Lab Phys Chem Solid Surface, Xiamen, Peoples R China
[7] Xiamen Univ, Shenzhen Res Inst, Shenzhen, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; LATTICE OXYGEN REDOX; EVOLUTION; ELECTROCATALYSTS; APPROXIMATION;
D O I
10.1038/s41467-024-50605-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Perovskite oxides show promise for the oxygen evolution reaction. However, numerical chemical compositions remain unexplored due to inefficient trial-and-error methods for material discovery. Here, we develop a transfer learning paradigm incorporating a pre-trained model, ensemble learning, and active learning, enabling the prediction of undiscovered perovskite oxides with enhanced generalizability for this reaction. Screening 16,050 compositions leads to the identification and synthesis of 36 new perovskite oxides, including 13 pure perovskite structures. Pr0.1Sr0.9Co0.5Fe0.5O3 and Pr0.1Sr0.9Co0.5Fe0.3Mn0.2O3 exhibit low overpotentials of 327 mV and 315 mV at 10 mA cm-2, respectively. Electrochemical measurements reveal coexistence of absorbate evolution and lattice oxygen mechanisms for O-O coupling in both materials. Pr0.1Sr0.9Co0.5Fe0.3Mn0.2O3 demonstrates enhanced OH- affinity compared to Pr0.1Sr0.9Co0.5Fe0.5O3, with the emergence of oxo-bridged Mn-Co conjugate facilitating charge redistribution and dynamic reversibility of Olattice/VO, thereby slowing down Co dissolution. This work paves the way for accelerated discovery and development of high-performance perovskite oxide electrocatalysts for this reaction. Discovering new active catalysts for water splitting is of high interest. Here the authors develop a generalizable transfer learning approach to accelerate the prediction of perovskite electrocatalysts, and report Pr0.1Sr0.9Co0.5Fe0.5O3 and Pr0.1Sr0.9Co0.5Fe0.3Mn0.2O3 as active catalysts for water oxidation.
引用
收藏
页数:15
相关论文
共 63 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Minimum adjusted Rand index for two clusterings of a given size [J].
Chacon, Jose E. ;
Rastrojo, Ana, I .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2023, 17 (01) :125-133
[3]   Interfacial Interaction between FeOOH and Ni-Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis [J].
Chen, Jiande ;
Zheng, Feng ;
Zhang, Shao-Jian ;
Fisher, Adrian ;
Zhou, Yao ;
Wang, Zeyu ;
Li, Yuyang ;
Xu, Bin-Bin ;
Li, Jun-Tao ;
Sun, Shi-Gang .
ACS CATALYSIS, 2018, 8 (12) :11342-11351
[4]   Interpretable machine learning for knowledge generation in heterogeneous catalysis [J].
Esterhuizen, Jacques A. ;
Goldsmith, Bryan R. ;
Linic, Suljo .
NATURE CATALYSIS, 2022, 5 (03) :175-184
[5]   Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution [J].
Feng, Chen ;
Zhang, Zhirong ;
Wang, Dongdi ;
Kong, Yuan ;
Wei, Jie ;
Wang, Ruyang ;
Ma, Peiyu ;
Li, Hongliang ;
Geng, Zhigang ;
Zuo, Ming ;
Bao, Jun ;
Zhou, Shiming ;
Zeng, Jie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (21) :9271-9279
[6]   Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences [J].
Feng, Jinchao ;
Lansford, Joshua L. ;
Katsoulakis, Markos A. ;
Vlachos, Dionisios G. .
SCIENCE ADVANCES, 2020, 6 (42)
[7]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[8]   Competition between CO2 Reduction and Hydrogen Evolution on a Gold Electrode under Well-Defined Mass Transport Conditions [J].
Goyal, Akansha ;
Marcandalli, Giulia ;
Mints, Vladislav A. ;
Koper, Marc T. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (09) :4154-4161
[9]  
Grimaud A, 2017, NAT CHEM, V9, P457, DOI [10.1038/NCHEM.2695, 10.1038/nchem.2695]
[10]   Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution [J].
Grimaud, Alexis ;
May, Kevin J. ;
Carlton, Christopher E. ;
Lee, Yueh-Lin ;
Risch, Marcel ;
Hong, Wesley T. ;
Zhou, Jigang ;
Shao-Horn, Yang .
NATURE COMMUNICATIONS, 2013, 4