Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems

被引:22
|
作者
Bai, Zhaoyuan [1 ]
Wang, Pengfei [1 ]
Xu, Jiaxing [1 ]
Wang, Ruzhu [1 ,2 ]
Li, Tingxian [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Res Ctr Solar Power & Refrigerat, Minist Educ, Shanghai 200240, Peoples R China
基金
国家杰出青年科学基金; 国家自然科学基金重大项目;
关键词
Atmospheric water harvesting; Water vapor sorption; Water sorbents; Thermal design; Heat transfer; Mass transport; METAL-ORGANIC FRAMEWORKS; COMPOSITE DESICCANT MATERIAL; THERMAL-CONDUCTIVITY; ADSORPTION; AIR; DRIVEN; SORBENTS; VAPOR; PERFORMANCE; DESALINATION;
D O I
10.1016/j.scib.2023.12.018
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity, particularly in land-locked arid regions. In this context, extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production. Sorption-based atmospheric water harvesting (SAWH) shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments. Herein, the latest progress in SAWH technology in terms of materials, devices, and systems is reviewed. Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption-desorption kinetics, including physical sorbents, polymeric hydrogels, composite sorbents, and ionic solutions, are discussed. The thermal designs of SAWH devices for improving energy utilization efficiency, heat transfer, and mass transport are evaluated, and the development of representative SAWH prototypes is clarified in a chronological order. Thereafter, state-of-the-art operation patterns of SAWH systems, incorporating intermittent, daytime continuous and 24-hour continuous patterns, are examined. Furthermore, current challenges and future research goals of this cutting-edge field are outlined. This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters. (c) 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:671 / 687
页数:17
相关论文
共 50 条
  • [1] Bridging materials innovations to sorption-based atmospheric water harvesting devices
    Zhong, Yang
    Zhang, Lenan
    Li, Xiangyu
    El Fil, Bachir
    Diaz-Marin, Carlos D.
    Li, Adela Chenyang
    Liu, Xinyue
    Lapotin, Alina
    Wang, Evelyn N.
    NATURE REVIEWS MATERIALS, 2024, 9 (10) : 681 - 698
  • [2] Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications
    Entezari, Akram
    Esan, Oladapo Christopher
    Yan, Xiaohui
    Wang, Ruzhu
    An, Liang
    ADVANCED MATERIALS, 2023, 35 (40)
  • [3] Sorption-based atmospheric water harvesters - perspectives on materials design and innovation
    Ansari, Essa
    Elwadood, Samar
    Balakrishnan, Harikrishnan
    Sapkaite, Ieva
    Munro, Catherine
    Karanikolos, Georgios N.
    Askar, Khalid
    Arafat, Hassan
    Mao, Samuel S.
    Dumee, Ludovic F.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):
  • [4] Global potential of continuous sorption-based atmospheric water harvesting
    Ying, Wenjun
    Li, Chunfeng
    Yang, Liang
    Hua, Lingji
    Zhang, Hua
    Wang, Ruzhu
    Wang, Jiayun
    ISCIENCE, 2025, 28 (04)
  • [5] Hygroscopic salt-embedded composite materials for sorption-based atmospheric water harvesting
    Shan, He
    Poredos, Primoz
    Chen, Zhihui
    Yang, Xinge
    Ye, Zhanyu
    Hu, Zhifeng
    Wang, Ruzhu
    Tan, Swee Ching
    NATURE REVIEWS MATERIALS, 2024, 9 (10): : 699 - 721
  • [6] Hygroscopic Porous Polymer for Sorption-Based Atmospheric Water Harvesting
    Deng, Fangfang
    Chen, Zhihui
    Wang, Chenxi
    Xiang, Chengjie
    Poredos, Primoz
    Wang, Ruzhu
    ADVANCED SCIENCE, 2022, 9 (33)
  • [7] Sorbents, processes and applications beyond water production in sorption-based atmospheric water harvesting
    Renyuan Li
    Peng Wang
    Nature Water, 2023, 1 (7): : 573 - 586
  • [8] Research status of physical sorbents for sorption-based atmospheric water harvesting
    Huo, Xiangyan
    Xu, Jiaxing
    Yan, Taisen
    Wang, Ruzhu
    Li, Tingxian
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (11): : 1392 - 1405
  • [9] Research Progress of Hydroscopic Salt and Its Composite Adsorbents Used for Sorption-based Atmospheric Water Harvesting
    Zhu R.
    Yu Q.
    Li M.
    Fan J.
    Chen J.
    Li A.
    Li Y.
    Zhan D.
    Wang Y.
    Cailiao Daobao/Materials Reports, 2023, 37 (19):
  • [10] Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives
    Lu, Hengyi
    Shi, Wen
    Guo, Youhong
    Guan, Weixin
    Lei, Chuxin
    Yu, Guihua
    ADVANCED MATERIALS, 2022, 34 (12)