Multiscale topology classifies cells in subcellular spatial transcriptomics

被引:8
作者
Benjamin, Katherine [1 ]
Bhandari, Aneesha [2 ,3 ]
Kepple, Jessica D. [2 ,3 ]
Qi, Rui [2 ,3 ,4 ]
Shang, Zhouchun [5 ,6 ]
Xing, Yanan [5 ,6 ]
An, Yanru [5 ]
Zhang, Nannan [7 ]
Hou, Yong [5 ]
Crockford, Tanya L. [2 ,3 ]
Mccallion, Oliver [8 ]
Issa, Fadi [8 ]
Hester, Joanna [8 ]
Tillmann, Ulrike [1 ,9 ]
Harrington, Heather A. [1 ,2 ,10 ,11 ,12 ]
Bull, Katherine R. [2 ,3 ,4 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Univ Oxford, Ctr Human Genet, Oxford, England
[3] Univ Oxford, Nuffield Dept Med, Oxford, England
[4] Univ Oxford, Chinese Acad Med Sci, Oxford Inst, Oxford, England
[5] BGI Res, Riga, Latvia
[6] Univ Chinese Acad Sci, Coll Life Sci, Beijing, Peoples R China
[7] BGI Res, Qingdao, Peoples R China
[8] Univ Oxford, Nuffield Dept Surg Sci, Translat Res Immunol Grp, Oxford, England
[9] Univ Cambridge, Isaac Newton Inst Math Sci, Cambridge, England
[10] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[11] Ctr Syst Biol, Dresden, Germany
[12] Tech Univ Dresden, Fac Math, Dresden, Germany
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
EXPRESSION; SEQ;
D O I
10.1038/s41586-024-07563-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spatial transcriptomics measures in situ gene expression at millions of locations within a tissue 1 , hitherto with some trade-off between transcriptome depth, spatial resolution and sample size 2 . Although integration of image-based segmentation has enabled impactful work in this context, it is limited by imaging quality and tissue heterogeneity. By contrast, recent array-based technologies offer the ability to measure the entire transcriptome at subcellular resolution across large samples 3-6 . Presently, there exist no approaches for cell type identification that directly leverage this information to annotate individual cells. Here we propose a multiscale approach to automatically classify cell types at this subcellular level, using both transcriptomic information and spatial context. We showcase this on both targeted and whole-transcriptome spatial platforms, improving cell classification and morphology for human kidney tissue and pinpointing individual sparsely distributed renal mouse immune cells without reliance on image data. By integrating these predictions into a topological pipeline based on multiparameter persistent homology 7-9 , we identify cell spatial relationships characteristic of a mouse model of lupus nephritis, which we validate experimentally by immunofluorescence. The proposed framework readily generalizes to new platforms, providing a comprehensive pipeline bridging different levels of biological organization from genes through to tissues. A method for topological automatic cell type classification across subcellular resolution spatial transcriptomic platforms is proposed, resolving cell type information and locating sparsely dispersed cells in human kidney and mouse kidney and brain.
引用
收藏
页码:943 / 949
页数:21
相关论文
共 49 条
  • [1] Abedini A, 2022, bioRxiv, DOI [10.1101/2022.10.24.513598, 10.1101/2022.10.24.513598, DOI 10.1101/2022.10.24.513598]
  • [2] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Andersson, Alma
    Bergenstrahle, Joseph
    Asp, Michaela
    Bergenstrahle, Ludvig
    Jurek, Aleksandra
    Fernandez Navarro, Jose
    Lundeberg, Joakim
    [J]. COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [3] Single-nucleus and single-cell transcriptomes compared in matched cortical cell types
    Bakken, Trygve E.
    Hodge, Rebecca D.
    Miller, Jeremy A.
    Yao, Zizhen
    Thuc Nghi Nguyen
    Aevermann, Brian
    Barkan, Eliza
    Bertagnolli, Darren
    Casper, Tamara
    Dee, Nick
    Garren, Emma
    Goldy, Jeff
    Graybuck, Lucas T.
    Kroll, Matthew
    Lasken, Roger S.
    Lathia, Kanan
    Parry, Sheana
    Rimorin, Christine
    Scheuermann, Richard H.
    Schork, Nicholas J.
    Shehata, Soraya I.
    Tieu, Michael
    Phillips, John W.
    Bernard, Amy
    Smith, Kimberly A.
    Zeng, Hongkui
    Lein, Ed S.
    Tasic, Bosiljka
    [J]. PLOS ONE, 2018, 13 (12):
  • [4] The Quickhull algorithm for convex hulls
    Barber, CB
    Dobkin, DP
    Huhdanpaa, H
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04): : 469 - 483
  • [5] Benjamin K., 2024, Zenodo, DOI [10.5281/zenodo.11050996, DOI 10.5281/ZENODO.11050996]
  • [6] Benjamin Katherine, 2024, Zenodo, DOI 10.5281/ZENODO.10950538
  • [7] Benjamin Katherine, 2024, Zenodo, DOI 10.5281/ZENODO.11050773
  • [8] Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram
    Biancalani, Tommaso
    Scalia, Gabriele
    Buffoni, Lorenzo
    Avasthi, Raghav
    Lu, Ziqing
    Sanger, Aman
    Tokcan, Neriman
    Vanderburg, Charles R.
    Segerstolpe, Asa
    Zhang, Meng
    Avraham-Davidi, Inbal
    Vickovic, Sanja
    Nitzan, Mor
    Ma, Sai
    Subramanian, Ayshwarya
    Lipinski, Michal
    Buenrostro, Jason
    Brown, Nik Bear
    Fanelli, Duccio
    Zhuang, Xiaowei
    Macosko, Evan Z.
    Regev, Aviv
    [J]. NATURE METHODS, 2021, 18 (11) : 1352 - +
  • [9] Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
  • [10] Robust decomposition of cell type mixtures in spatial transcriptomics
    Cable, Dylan M.
    Murray, Evan
    Zou, Luli S.
    Goeva, Aleksandrina
    Macosko, Evan Z.
    Chen, Fei
    Irizarry, Rafael A.
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (04) : 517 - +