DLGSANet: Lightweight Dynamic Local and Global Self-Attention Network for Image Super-Resolution

被引:33
作者
Li, Xiang [1 ]
Dong, Jiangxin [1 ]
Tang, Jinhui [1 ]
Pan, Jinshan [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023) | 2023年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1109/ICCV51070.2023.01175
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an effective lightweight dynamic local and global self-attention network (DLGSANet) to solve image super-resolution. Our method explores the properties of Transformers while having low computational costs. Motivated by the network designs of Transformers, we develop a simple yet effective multi-head dynamic local self-attention ( MHDLSA) module to extract local features efficiently. In addition, we note that existing Transformers usually explore all similarities of the tokens between the queries and keys for the feature aggregation. However, using all the similarities does not effectively facilitate the high-resolution image reconstruction as not all the tokens from the queries are relevant to those in keys. To overcome this problem, we develop a sparse global self-attention (SparseGSA) module to select the most useful similarity values so that the most useful global features can be better utilized for image reconstruction. We develop a hybrid dynamic-Transformer block (HDTB) that integrates the MHDLSA and Sparse-GSA for both local and global feature exploration. To ease the network training, we formulate the HDTBs into a residual hybrid dynamic-Transformer group (RHDTG). By embedding the RHDTGs into an end-to-end trainable network, we show that the proposed method has fewer network parameters and lower computational costs while achieving competitive performance against state-of-the-art ones in terms of accuracy. More information is available at https: //neonleexiang.github.io/DLGSANet/.
引用
收藏
页码:12746 / 12755
页数:10
相关论文
共 34 条
[1]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[2]  
[Anonymous], 2022, CVPR, DOI DOI 10.1109/CVPR52688.2022.00564
[3]  
[Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.01132
[4]  
[Anonymous], 2017, 2017 IEEE C COMPUTER
[5]  
[Anonymous], 2016, CVPR, DOI DOI 10.1109/CVPR.2016.181
[6]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[7]   Single Image Super-Resolution via a Holistic Attention Network [J].
Niu, Ben ;
Wen, Weilei ;
Ren, Wenqi ;
Zhang, Xiangde ;
Yang, Lianping ;
Wang, Shuzhen ;
Zhang, Kaihao ;
Cao, Xiaochun ;
Shen, Haifeng .
COMPUTER VISION - ECCV 2020, PT XII, 2020, 12357 :191-207
[8]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[9]   Onset and termination of Heinrich Stadial 4 and the underlying climate dynamics [J].
Cheng, Hai ;
Xu, Yao ;
Dong, Xiyu ;
Zhao, Jingyao ;
Li, Hanying ;
Baker, Jonathan ;
Sinha, Ashish ;
Spotl, Christoph ;
Zhang, Haiwei ;
Du, Wenjing ;
Zong, Baoyun ;
Jia, Xue ;
Kathayat, Gayatri ;
Liu, Dianbing ;
Cai, Yanjun ;
Wang, Xianfeng ;
Strikis, Nicolas M. ;
Cruz, Francisco W. ;
Auler, Augusto S. ;
Gupta, Anil K. ;
Singh, Raj Kumar ;
Jaglan, Sonu ;
Dutt, Som ;
Liu, Zhengyu ;
Edwards, R. Lawrence .
COMMUNICATIONS EARTH & ENVIRONMENT, 2021, 2 (01)
[10]  
Chu Xiaojie, 2022, ECCV