Parameter-state estimation for mechanical systems with small model errors

被引:0
作者
Gres, Szymon [1 ]
Tatsis, Konstantinos [1 ]
Dertimanis, Vasilis [1 ]
Chatzi, Eleni [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Civil Environm & Geomat Engn, CH-8093 Zurich, Switzerland
关键词
Parameter estimation; change detection; mechanical vibrations; Bayesian filtering;
D O I
10.1016/j.ifacol.2023.10.909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of algorithms for parameter-state estimation, often expressed within a Bayesian filtering context, can be hindered by the need to recompute the parametric system matrices at each parameter iteration step. This work aims to alleviate the associated computational burden by expressing model errors that stem from parametric uncertainties, as additive parametric terms in the state and observation equations. For this purpose errors in the eigenstructure of a parametrized mechanical system are propagated to the physical parameters and eventually modelled as additive terms by means of perturbation analysis. A state observer is derived under the assumption that the change between the current and a true model parameter is deterministic and known. An estimate of the possible parameter discrepancy is obtained by minimizing the value of a change detection test applied on a Kalman filter innovation sequence.
引用
收藏
页码:10264 / 10269
页数:6
相关论文
共 50 条
[41]   Variational State and Parameter Estimation [J].
Courts, Jarrad ;
Hendriks, Johannes ;
Wills, Adrian ;
Schon, Thomas B. ;
Ninness, Brett .
IFAC PAPERSONLINE, 2021, 54 (07) :732-737
[42]   Improved Particle Filtering for State and Parameter Estimation- CSTR Model [J].
Mansouri, Majdi ;
Nounou, Hazem ;
Nounou, Mohamed .
2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,
[43]   Endogenous model state and parameter estimation from an extensive batch experiment [J].
Keesman, KJ ;
Spanjers, H .
BIOTECHNOLOGY AND BIOENGINEERING, 2000, 68 (04) :422-429
[44]   State and Parameter Estimation of a Mathematical Carcinoma Model under Chemotherapeutic Treatment [J].
Siket, Mate ;
Eigner, Gyorgy ;
Drexler, Daniel Andras ;
Rudas, Imre ;
Kovacs, Levente .
APPLIED SCIENCES-BASEL, 2020, 10 (24) :1-17
[45]   Combined state and parameter estimation for a landslide model using Kalman filter [J].
Mishra, Mohit ;
Besancon, Gildas ;
Chambon, Guillaume ;
Baillet, Laurent .
IFAC PAPERSONLINE, 2021, 54 (07) :304-309
[46]   An investigation of extended kalman filtering in the errors-in-variables framework - A joint state and parameter estimation approach [J].
Linden, Jens G. ;
Vinsonneau, Benoit ;
Burnham, Keith J. .
ICINCO 2007: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL SPSMC: SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL, 2007, :47-53
[47]   Joint State and Parameter Estimation for Discrete-Time Polytopic Linear Parameter-Varying Systems [J].
Beelen, H. P. G. J. ;
Donkers, M. C. F. .
IFAC PAPERSONLINE, 2017, 50 (01) :9778-9783
[48]   Parameter estimation in dynamic systems [J].
Schittkowski, K .
PROGRESS IN OPTIMIZATION: CONTRIBUTIONS FROM AUSTRALASIA, 2000, 39 :183-204
[49]   Set membership state and parameter estimation for systems described by nonlinear differential equations [J].
Raïssi, T ;
Ramdani, N ;
Candau, Y .
AUTOMATICA, 2004, 40 (10) :1771-1777
[50]   Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems [J].
Rodriguez-Fernandez, Maria ;
Rehberg, Markus ;
Kremling, Andreas ;
Banga, Julio R. .
BMC SYSTEMS BIOLOGY, 2013, 7