Parameter-state estimation for mechanical systems with small model errors

被引:0
作者
Gres, Szymon [1 ]
Tatsis, Konstantinos [1 ]
Dertimanis, Vasilis [1 ]
Chatzi, Eleni [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Civil Environm & Geomat Engn, CH-8093 Zurich, Switzerland
关键词
Parameter estimation; change detection; mechanical vibrations; Bayesian filtering;
D O I
10.1016/j.ifacol.2023.10.909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of algorithms for parameter-state estimation, often expressed within a Bayesian filtering context, can be hindered by the need to recompute the parametric system matrices at each parameter iteration step. This work aims to alleviate the associated computational burden by expressing model errors that stem from parametric uncertainties, as additive parametric terms in the state and observation equations. For this purpose errors in the eigenstructure of a parametrized mechanical system are propagated to the physical parameters and eventually modelled as additive terms by means of perturbation analysis. A state observer is derived under the assumption that the change between the current and a true model parameter is deterministic and known. An estimate of the possible parameter discrepancy is obtained by minimizing the value of a change detection test applied on a Kalman filter innovation sequence.
引用
收藏
页码:10264 / 10269
页数:6
相关论文
共 50 条
[31]   AN INNOVATION REPRESENTATION FOR NONLINEAR-SYSTEMS WITH APPLICATION TO PARAMETER AND STATE ESTIMATION [J].
AHMED, MS .
AUTOMATICA, 1994, 30 (12) :1967-1974
[32]   Optimal initial state for fast parameter estimation in nonlinear dynamical systems [J].
Li, Qiaochu ;
Jauberthie, Carine ;
Denis-Vidal, Lilianne ;
Cherfi, Zohra .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 171 :109-117
[33]   A Multi-State Optimization Framework for Parameter Estimation in Biological Systems [J].
Gu, Xu .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (03) :472-482
[35]   Methodologies for parameter and state estimation in electric power systems: A comparative analysis [J].
Romay, Omar ;
Fuerte-Esquivel, Claudio R. ;
Zamora-Cardenas, Enrique A. ;
Gutierrez-Martinez, Victor J. .
2019 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2019), 2019,
[36]   Experimental Investigation of State and Parameter Estimation within Reconfigurable Battery Systems [J].
Theiler, Michael ;
Schneider, Dominik ;
Endisch, Christian .
BATTERIES-BASEL, 2023, 9 (03)
[37]   Adaptive nonlinear observer for state and unknown parameter estimation in noisy systems [J].
Vijayaraghavan, Krishna ;
Valibeygi, Amir .
INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (01) :38-54
[38]   Parameter and State Estimation Algorithm for a State Space Model with a One-unit State Delay [J].
Gu, Ya ;
Lu, Xianling ;
Ding, Ruifeng .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2013, 32 (05) :2267-2280
[39]   Parameter and State Estimation Algorithm for a State Space Model with a One-unit State Delay [J].
Ya Gu ;
Xianling Lu ;
Ruifeng Ding .
Circuits, Systems, and Signal Processing, 2013, 32 :2267-2280
[40]   Parameter Estimation for Predictive Simulation of Oscillatory Systems with Model Discrepancy [J].
McMahan, Jerry A., Jr. ;
Smith, Ralph C. .
IFAC PAPERSONLINE, 2016, 49 (18) :428-433