Parameter-state estimation for mechanical systems with small model errors

被引:0
作者
Gres, Szymon [1 ]
Tatsis, Konstantinos [1 ]
Dertimanis, Vasilis [1 ]
Chatzi, Eleni [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Civil Environm & Geomat Engn, CH-8093 Zurich, Switzerland
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Parameter estimation; change detection; mechanical vibrations; Bayesian filtering;
D O I
10.1016/j.ifacol.2023.10.909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of algorithms for parameter-state estimation, often expressed within a Bayesian filtering context, can be hindered by the need to recompute the parametric system matrices at each parameter iteration step. This work aims to alleviate the associated computational burden by expressing model errors that stem from parametric uncertainties, as additive parametric terms in the state and observation equations. For this purpose errors in the eigenstructure of a parametrized mechanical system are propagated to the physical parameters and eventually modelled as additive terms by means of perturbation analysis. A state observer is derived under the assumption that the change between the current and a true model parameter is deterministic and known. An estimate of the possible parameter discrepancy is obtained by minimizing the value of a change detection test applied on a Kalman filter innovation sequence.
引用
收藏
页码:10264 / 10269
页数:6
相关论文
共 50 条
  • [21] Parameter Estimation and Model Order Identification of LTI Systems
    Varanasi, Santhosh Kumar
    Jampana, Phanindra
    IFAC PAPERSONLINE, 2016, 49 (07): : 1002 - 1007
  • [22] Parameter and State Estimation for Uncertain Linear Systems by Multiple Observers
    Muramatsu, Eiichi
    Ikeda, Masao
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2011, 9 (04) : 617 - 626
  • [23] Parameter and state estimation for uncertain linear systems by multiple observers
    Eiichi Muramatsu
    Masao Ikeda
    International Journal of Control, Automation and Systems, 2011, 9 : 617 - 626
  • [24] Multi-innovation parameter and state estimation for multivariable state space systems
    Wang, Xuehai
    Zhu, Fang
    Huang, Fenglin
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (3-4) : 274 - 279
  • [25] Active state and parameter estimation as part of intelligent battery systems
    Schneider, Dominik
    Liebhart, Bernhard
    Endisch, Christian
    JOURNAL OF ENERGY STORAGE, 2021, 39
  • [26] Simultaneous Parameter and State Estimation of Agro-Hydrological Systems
    Bo, Song
    Sahoo, Soumya R.
    Yin, Xunyuan
    Liu, Jinfeng
    Shah, Sirish L.
    IFAC PAPERSONLINE, 2020, 53 (02): : 11767 - 11772
  • [27] State Filtering and Parameter Estimation for Hodgkin-Huxley Model
    Liao, Fang
    Lou, Xuyang
    Cui, Baotong
    Wu, Wei
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4658 - 4663
  • [28] Sampling Errors in Nested Sampling Parameter Estimation
    Higson, Edward
    Handley, Will
    Hobson, Mike
    Lasenby, Anthony
    BAYESIAN ANALYSIS, 2018, 13 (03): : 873 - 896
  • [29] Optimal initial state for fast parameter estimation in nonlinear dynamical systems
    Li, Qiaochu
    Jauberthie, Carine
    Denis-Vidal, Lilianne
    Cherfi, Zohra
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 171 : 109 - 117
  • [30] Adaptive nonlinear observer for state and unknown parameter estimation in noisy systems
    Vijayaraghavan, Krishna
    Valibeygi, Amir
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (01) : 38 - 54