Infinitely many solutions for a p(x)-triharmonic equation with Navier boundary conditions

被引:0
作者
Belakhdar, Adnane [1 ]
Belaouidel, Hassan [2 ]
Filali, Mohammed [2 ]
Tsouli, Najib [2 ]
机构
[1] Univ Mohammed 1, Fac Sci, Dept Math, Oujda, Morocco
[2] Univ Mohammed 1, Fac Sci, Dept Math, Oujda, Morocco
关键词
Weak solutions; Navier boundary condition; p(x)-triharmonic operator; VARIABLE EXPONENT; EXISTENCE; LEBESGUE;
D O I
10.1515/jaa-2023-0055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we will study the existence of an infinity of solutions of a Navier problem governed by the p(x)-triharmonic operator using the theory of Ljusternick-Shrilemann and the theory of the variable exponent Sobolev spaces.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 25 条
[1]   Spectral discretization of the time-dependent Navier-Stokes problem with mixed boundary conditions [J].
Abdelwahed, Mohamed ;
Chorfi, Nejmeddine .
ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) :1447-1465
[2]  
Antontsev S., 2006, Ann. Univ. Ferrara Sez. VII Sci. Mat, V52, P19, DOI DOI 10.1007/S11565-006-0002-9
[3]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[4]   On the spectrum of a fourth order elliptic equation with variable exponent [J].
Ayoujil, A. ;
El Amrouss, A. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4916-4926
[5]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[6]   EXISTENCE AND ASYMPTOTIC STABILITY FOR GENERALIZED ELASTICITY EQUATION WITH VARIABLE EXPONENT [J].
Dilmi, Mohamed ;
Otmani, Sadok .
OPUSCULA MATHEMATICA, 2023, 43 (03) :409-428
[7]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293
[8]   Existence of solutions for a boundary problem involving p(x)-biharmonic operator [J].
El Amrouss, Abdel Rachid ;
Ourraoui, Anass .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2013, 31 (01) :179-192
[9]   Neumann problem in divergence form modeled on the p(x)-Laplace equation [J].
El Amrouss, Abdelrachid ;
Moradi, Fouzia ;
Ourraoui, Anass .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (02) :109-117
[10]   Existence results to elliptic systems with nonstandard growth conditions [J].
El Hamidi, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (01) :30-42