Neutronics Analyses of the Radiation Field at the Accelerator-Based Neutron Source of Nagoya University for the BNCT Study

被引:4
作者
Nishitani, Takeo [1 ]
Yoshihashi, Sachiko [1 ]
Tanagami, Yuuki [1 ]
Tsuchida, Kazuki [1 ]
Honda, Shogo [1 ]
Yamazaki, Atsushi [1 ]
Watanabe, Kenichi [2 ]
Kiyanagi, Yoshiaki [3 ]
Uritani, Akira [1 ]
机构
[1] Nagoya Univ, Grad Sch Engn, Furo cho,Chikusa ku, Nagoya 4648603, Japan
[2] Kyushu Univ, Grad Sch, 744 Motooka, Fukuoka 8190395, Japan
[3] Hokkaido Univ, Fac Engn, Sapporo, Hokkaido 0608628, Japan
来源
JOURNAL OF NUCLEAR ENGINEERING | 2022年 / 3卷 / 03期
关键词
boron neutron capture therapy; accelerator-based neutron source; PHITS code; radiation therapy; Monte Carlo method; neutron dosimetry; NUCLEAR-SCIENCE; LIBRARY;
D O I
10.3390/jne3030012
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Nagoya University Accelerator-driven Neutron Source (NUANS) is an accelerator-based neutron source by 7Li(p,n)7Be reaction with a 2.8 MeV proton beam up to 15 mA. The fast neutrons are moderated and shaped to beam with a Beam Shaping Assembly (BSA). NUANS is aiming at the basic study of the Boron Neutron Capture Therapy (BNCT) such as an in vitro cell-based irradiation experiment using a water phantom. Moreover, the BSA is developed as a prototype of one for human treatment. We have evaluated the radiation field of NUANS by a Monte Carlo code PHITS. It is confirmed that the radiation characteristics at the BNCT outlet meet the requirement of IAEA TECDOC-1223. Additionally, the radiation field in the water phantom located just in front of the BSA outlet is calculated. In the in vitro irradiation experiment, the boron dose of 30 Gy-eq, which is the dose to kill tumor cells, is expected for 20 min of irradiation at the beam current of 15 mA.
引用
收藏
页码:222 / 232
页数:11
相关论文
共 21 条
[1]   Neutron beams implemented at nuclear research reactors for BNCT [J].
Bavarnegin, E. ;
Kasesaz, Y. ;
Wagner, F. M. .
JOURNAL OF INSTRUMENTATION, 2017, 12
[2]  
Burian J., 2001, Current Status of Neutron Capture Therapy (IAEA-TECDOC-1223)
[3]   ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology [J].
Chadwick, M. B. ;
Oblozinsky, P. ;
Herman, M. ;
Greene, N. M. ;
McKnight, R. D. ;
Smith, D. L. ;
Young, P. G. ;
MacFarlane, R. E. ;
Hale, G. M. ;
Frankle, S. C. ;
Kahler, A. C. ;
Kawano, T. ;
Little, R. C. ;
Madland, D. G. ;
Moller, P. ;
Mosteller, R. D. ;
Page, P. R. ;
Talou, P. ;
Trellue, H. ;
White, M. C. ;
Wilson, W. B. ;
Arcilla, R. ;
Dunford, C. L. ;
Mughabghab, S. F. ;
Pritychenko, B. ;
Rochman, D. ;
Sonzogni, A. A. ;
Lubitz, C. R. ;
Trumbull, T. H. ;
Weinman, J. P. ;
Brown, D. A. ;
Cullen, D. E. ;
Heinrichs, D. P. ;
McNabb, D. P. ;
Derrien, H. ;
Dunn, M. E. ;
Larson, N. M. ;
Leal, L. C. ;
Carlson, A. D. ;
Block, R. C. ;
Briggs, J. B. ;
Cheng, E. T. ;
Huria, H. C. ;
Zerkle, M. L. ;
Kozier, K. S. ;
Courcelle, A. ;
Pronyaev, V. ;
van der Marck, S. C. .
NUCLEAR DATA SHEETS, 2006, 107 (12) :2931-3059
[4]  
FARR LE, 1954, AM J ROENTGENOL, V71, P279
[5]  
Hashimoto Y., 2014, Physics Procedia, V60, P332
[6]   Synergistic effects of fast-neutron dose per epithermal neutron and 10B concentration on relative-biological-effectiveness dose for accelerator-based boron neutron capture therapy [J].
Hiraga, F. ;
Ooie, T. .
APPLIED RADIATION AND ISOTOPES, 2019, 144 :1-4
[7]  
iba, Dynamitron E-Beam Accelerator
[8]  
ICRP The, 1990, Publication, V60
[9]   Development of Optical-fiber-based Neutron Detector Using Li glass Scintillator for an Intense Neutron Field [J].
Ishikawa, Akihisa ;
Yamazaki, Atsushi ;
Watanabe, Kenichi ;
Yoshihashi, Sachiko ;
Uritani, Akira ;
Sakurai, Yoshinori ;
Tanaka, Hiroki ;
Ogawara, Ryo ;
Suda, Mitsuru ;
Hamano, Tsuyoshi .
SENSORS AND MATERIALS, 2020, 32 (04) :1489-1495
[10]   The accelerator neutron source for boron neutron capture therapy [J].
Kasatov, D. ;
Koshkarev, A. ;
Kuznetsov, A. ;
Makarov, A. ;
Ostreinov, Yu ;
Shchudlo, I. ;
Sorokin, I. ;
Sycheva, T. ;
Taskaev, S. ;
Zaidi, L. .
18TH INTERNATIONAL CONFERENCE PHYSICA.SPB, 2016, 769