Phosphorylation-regulated phase separation of syndecan-4 and syntenin promotes the biogenesis of exosomes

被引:2
作者
Zhao, Tian [1 ]
Yang, Xiaolan [1 ]
Duan, Guangfei [1 ]
Chen, Jialin [1 ]
He, Kefeng [1 ]
Chen, Yong-Xiang [2 ,3 ]
Luo, Shi-Zhong [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Life Sci & Technol, State Key Lab Chem Resource Engn, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Minist Educ, Beijing, Peoples R China
[3] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Minist Educ, Beijing 100084, Peoples R China
关键词
EXTRACELLULAR VESICLES; PROTEIN; COMPLEXITY; SECRETION; DOMAINS; RECEPTOR; DISEASE; ROLES; TAIL;
D O I
10.1111/cpr.13645
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The biogenesis of exosomes that mediate cell-to-cell communication by transporting numerous biomolecules to neighbouring cells is an essential cellular process. The interaction between the transmembrane protein syndecan-4 (SDC4) and cytosolic protein syntenin plays a key role in the biogenesis of exosomes. However, how the relatively weak binding of syntenin to SDC4 efficiently enables syntenin sorting for packaging into exosomes remains unclear. Here, we demonstrate for the first time that SDC4 can undergo liquid-liquid phase separation (LLPS) to form condensates both in vitro and in the cell membrane and that, the SDC4 cytoplasmic domain (SDC4-CD) is a key contributor to this process. The phase separation of SDC4 greatly enhances the recruitment of syntenin to the plasma membrane (PM) despite the weak SDC4-syntenin interaction, facilitating syntenin sorting for inclusion in exosomes. Interestingly, phosphorylation at the only serine (179) in the SDC4-CD (Ser179) disrupts SDC4 LLPS, and inhibited phosphorylation or dephosphorylation restores the SDC4 LLPS to promote its recruitment of syntenin to the PM and syntenin inclusion into exosomes. This research reveals a novel phosphorylation-regulated phase separation property of SDC4 in the PM through which SDC4 efficiently recruits cytosolic syntenin and facilitates the biogenesis of exosomes, providing potential intervention targets for exosome-mediated biomedical events. This research uncovers a novel phosphorylation-regulated phase separation property of SDC4 on the PM by which SDC4 realizes efficient recruitment of cytosolic syntenin and thereby facilitates the biogenesis of exosomes, providing potential intervention targets for exosome-involved biomedical events. image
引用
收藏
页数:13
相关论文
共 43 条
[1]   PROTEIN-KINASE-C REGULATES THE RECRUITMENT OF SYNDECAN-4 INTO FOCAL CONTACTS [J].
BACIU, PC ;
GOETINCK, PF .
MOLECULAR BIOLOGY OF THE CELL, 1995, 6 (11) :1503-1513
[2]   Syndecan-syntenin-ALIX regulates the biogenesis of exosomes [J].
Baietti, Maria Francesca ;
Zhang, Zhe ;
Mortier, Eva ;
Melchior, Aurelie ;
Degeest, Gisele ;
Geeraerts, Annelies ;
Ivarsson, Ylva ;
Depoortere, Fabienne ;
Coomans, Christien ;
Vermeiren, Elke ;
Zimmermann, Pascale ;
David, Guido .
NATURE CELL BIOLOGY, 2012, 14 (07) :677-685
[3]   Biomolecular condensates: organizers of cellular biochemistry [J].
Banani, Salman F. ;
Lee, Hyun O. ;
Hyman, Anthony A. ;
Rosen, Michael K. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (05) :285-298
[4]   Phase Transitions of Multivalent Proteins Can Promote Clustering of Membrane Receptors [J].
Banjade, Sudeep ;
Rosen, Michael K. .
ELIFE, 2014, 3
[5]   Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling [J].
Bass, MD ;
Humphries, MJ .
BIOCHEMICAL JOURNAL, 2002, 368 :1-15
[6]   Signalosome assembly by domains undergoing dynamic head-to-tail polymerization [J].
Bienz, Mariann .
TRENDS IN BIOCHEMICAL SCIENCES, 2014, 39 (10) :487-495
[7]   Exosome Secretion: Molecular Mechanisms and Roles in Immune Responses [J].
Bobrie, Angelique ;
Colombo, Marina ;
Raposo, Graca ;
Thery, Clotilde .
TRAFFIC, 2011, 12 (12) :1659-1668
[8]  
Brangwynne CP, 2015, NAT PHYS, V11, P899, DOI [10.1038/NPHYS3532, 10.1038/nphys3532]
[9]   Multidimensional communication in the microenvirons of glioblastoma [J].
Broekman, Marike L. ;
Maas, Sybren L. N. ;
Abels, Erik R. ;
Mempel, Thorsten R. ;
Krichevsky, Anna M. ;
Breakefield, Xandra O. .
NATURE REVIEWS NEUROLOGY, 2018, 14 (08) :482-495
[10]  
Carey DJ, 1997, BIOCHEM J, V327, P1