Electrical behavior of a graphene/PEKK and carbon black/PEKK nanocomposites in the vicinity of the percolation threshold

被引:8
作者
Bessaguet C. [1 ,2 ,3 ]
Dantras E. [2 ]
Michon G. [3 ]
Chevalier M. [1 ]
Laffont L. [4 ]
Lacabanne C. [2 ]
机构
[1] Institut de Recherche Technologique (IRT) Saint Exupéry, 118 route de Narbonne, CS 44248, Cedex 4, Toulouse
[2] CIRIMAT, Université de Toulouse, CNRS, UPS, Physique des Polymères, 118 route de Narbonne, Cedex 09, Toulouse
[3] Institut Supérieur de l'Aéronautique et de l'espace, Institut Clément Ader, 3 rue Caroline Aigle, Toulouse
[4] CIRIMAT, Université de Toulouse, CNRS, INPT, ENSIACET, 4 allée Emile Monso, CS44362, Toulouse
来源
Journal of Non-Crystalline Solids | 2020年 / 512卷
关键词
Carbon black; Conductive nanocomposite; Dielectric permittivity; Electrical conductivity; Graphene; Mechanical moduli; Percolation threshold; Poly(ether ketone ketone);
D O I
10.1016/j.jnoncrysol.2019.02.017
中图分类号
学科分类号
摘要
Graphene and carbon black have been dispersed in a high performance thermoplastic polymer, the poly(ether ketone ketone), to improve its electrical conductivity. The dispersion of graphene has a significant influence on the percolation threshold. A simple exfoliation protocol to obtain graphene monolayers has led to a significant decrease of the percolation threshold from 4.2 to 1.9 vol%. To the best of our knowledge, it is one of the lowest percolation values for unfunctionalized graphene dispersed by melt blending in a high performance thermoplastic matrix. The conductivity value above the percolation threshold (1.2 S·m −1 ) means that graphene was not degraded during the elaboration process. Below the percolation threshold, Maxwell-Wagner-Sillars phenomenon increases the dielectric permittivity from 2.7 to 210 for PEKK/6 vol% graphene at 180 °C and 1 Hz. Dynamic mechanical analyses have shown that mechanical moduli were not significantly modified by conductive particles until 6 vol%. © 2019 Elsevier B.V.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 48 条
[1]  
Ramachandran L., Lonjon A., Demont P., Dantras E., Lacabanne C., Conduction mechanisms in P(VDF-TrFE)/gold nanowire composites: tunnelling and thermally-activated hopping process near the percolation threshold, Mater. Res. Express., 3, (2016)
[2]  
Salvadori M.C., Teixeira F.S., Sgubin L.G., Cattani M., Brown I.G., Electrical conductivity of gold-implanted alumina nanocomposite, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 310, pp. 32-36, (2013)
[3]  
Zheng W., Lu X.F., Wang W., Wang Z.J., Song M.X., Wang Y., Wang C., Fabrication of novel Ag nanowires/poly(vinylidene fluoride) nanocomposite film with high dielectric constant, Phys. Status Solidi A., 207, pp. 1870-1873, (2010)
[4]  
Riviere L., Lonjon A., Dantras E., Lacabanne C., Olivier P., Gleizes N.R., Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites, Eur. Polym. J., 85, pp. 115-125, (2016)
[5]  
Cortes L.Q., Lonjon A., Dantras E., Lacabanne C., High-performance thermoplastic composites poly(ether ketone ketone)/silver nanowires: morphological, mechanical and electrical properties, J. Non-Cryst. Solids, 391, pp. 106-111, (2014)
[6]  
Xu J.X.J., Wong M., Wong C.P., Super high dielectric constant carbon black-filled polymer composites as integral capacitor dielectrics, 2004 Electron, Components Technol. Conf., 1, pp. 536-541, (2004)
[7]  
Van Durmen P., Etude de l'influence de la dispersion de nanotubes de carbone sur les propriétés électriques de composites à matrice PEEK, (2014)
[8]  
Carponcin D., Dantras E., Dandurand J., Aridon G., Levallois F., Cadiergues L., Lacabanne C., Discontinuity of physical properties of carbon nanotube/polymer composites at the percolation threshold, J. Non-Cryst. Solids, 392-393, pp. 19-25, (2014)
[9]  
Dhand V., Rhee K.Y., Kim H.J., Jung D.H., A comprehensive review of graphene nanocomposites: research status and trends, J. Nanomater., 14, pp. 1-50, (2013)
[10]  
Sanjines R., Abad M.D., Vaju C., Smajda R., Mionic M., Magrez A., Electrical properties and applications of carbon based nanocomposite materials: an overview, Surf. Coatings Technol., 206, pp. 727-733, (2011)