Deciphering the functional and structural complexity of the Solar Lake flat mat microbial benthic communities

被引:1
作者
Abdallah, Rehab Z. [1 ]
Elbehery, Ali H. A. [2 ]
Ahmed, Shimaa F. [1 ]
Ouf, Amged [1 ]
Malash, Mohamed N. [3 ]
Liesack, Werner [4 ]
Siam, Rania [1 ]
机构
[1] Amer Univ Cairo, Biol Dept, Cairo, Egypt
[2] Univ Sadat City, Dept Microbiol & Immunol, Fac Pharm, Sadat City, Egypt
[3] Ahram Canadian Univ, Fac Pharm, Microbiol & Immunol Dept, Giza, Egypt
[4] Max Planck Inst Terr Microbiol, Marburg, Germany
关键词
Solar Lake; hypersaline; community genomics; methanogenesis; candidate phyla; flat microbial mat; SULFATE-REDUCING BACTERIA; CYANOBACTERIAL MATS; SP-NOV; SINAI; DIVERSITY; PHOTOSYNTHESIS; TOOL; RESPONSES; QUALITY; ONLINE;
D O I
10.1128/msystems.00095-24
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The Solar Lake in Taba, Egypt, encompasses one of the few modern-day microbial mats' systems metabolically analogous to Precambrian stromatolites. Solar Lake benthic communities and their adaptation to the Lake's unique limnological cycle have not been described for over two decades. In this study, we revisit the flat mat and describe the summer's shallow water versus exposed microbial community; the latter occurs in response to the seasonal partial receding of water. We employed metagenomic NovaSeq-6000 shotgun sequencing and 16S rRNA, mcrA, and dsrB quantitative PCR. A total of 292 medium-to-high-quality metagenome-assembled genomes (MAGs) were reconstructed. At the structural level, Candidatus Aenigmatarchaeota, Micrarchaeota, and Omnitrophota MAGs were exclusively detected in the shallow-water mats, whereas Halobacteria and Myxococcota MAGs were specific to the exposed microbial mat. Functionally, genes involved in reactive oxygen species (ROS) detoxification and osmotic pressure were more abundant in the exposed than in the shallow-water microbial mats, whereas genes involved in sulfate reduction/oxidation and nitrogen fixation were ubiquitously detected. Genes involved in the utilization of methylated amines for methane production were predominant when compared with genes associated with alternative methanogenesis pathways. Solar Lake methanogen MAGs belonged to Methanosarcinia, Bathyarchaeia, Candidatus Methanofastidiosales, and Archaeoglobales. The latter had the genetic capacity for anaerobic methane oxidation. Moreover, Coleofasciculus chthonoplastes, previously reported to dominate the winter shallow-water flat mat, had a substantial presence in the summer. These findings reveal the taxonomic and biochemical microbial zonation of the exposed and shallow-water Solar Lake flat mat benthic community and their capacity to ecologically adapt to the summer water recession.IMPORTANCE Fifty-five years ago, the extremophilic "Solar Lake" was discovered on the Red Sea shores, garnering microbiologists' interest worldwide from the 1970s to 1990s. Nevertheless, research on the lake paused at the turn of the millennium. In our study, we revisited the Solar Lake benthic community using a genome-centric approach and described the distinct microbial communities in the exposed versus shallow-water mat unveiling microbial zonation in the benthic communities surrounding the Solar Lake. Our findings highlighted the unique structural and functional adaptations employed by these microbial mat communities. Moreover, we report new methanogens and phototrophs, including an intriguing methanogen from the Archaeoglobales family. We describe how the Solar Lake's flat mat microbial community adapts to stressors like oxygen intrusion and drought due to summer water level changes, which provides insights into the genomic strategies of microbial communities to cope with altered and extreme environmental conditions. Fifty-five years ago, the extremophilic "Solar Lake" was discovered on the Red Sea shores, garnering microbiologists' interest worldwide from the 1970s to 1990s. Nevertheless, research on the lake paused at the turn of the millennium. In our study, we revisited the Solar Lake benthic community using a genome-centric approach and described the distinct microbial communities in the exposed versus shallow-water mat unveiling microbial zonation in the benthic communities surrounding the Solar Lake. Our findings highlighted the unique structural and functional adaptations employed by these microbial mat communities. Moreover, we report new methanogens and phototrophs, including an intriguing methanogen from the Archaeoglobales family. We describe how the Solar Lake's flat mat microbial community adapts to stressors like oxygen intrusion and drought due to summer water level changes, which provides insights into the genomic strategies of microbial communities to cope with altered and extreme environmental conditions.
引用
收藏
页数:20
相关论文
共 98 条
  • [1] Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life
    Abdallah, Rehab Z.
    Wegner, Carl-Eric
    Liesack, Werner
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2019, 132 (131-142) : 131 - 142
  • [2] Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf
    Abed, Raeid M. M.
    Kohls, Katharina
    de Beer, Dirk
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2007, 9 (06) : 1384 - 1392
  • [3] KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold
    Aramaki, Takuya
    Blanc-Mathieu, Romain
    Endo, Hisashi
    Ohkubo, Koichi
    Kanehisa, Minoru
    Goto, Susumu
    Ogata, Hiroyuki
    [J]. BIOINFORMATICS, 2020, 36 (07) : 2251 - 2252
  • [4] Baldani JI, 2014, PROKARYOTES ALPHAPRO, P533, DOI DOI 10.1007/978-3-642-30197-1300
  • [5] Asgard archaea in saline environments
    Banciu, Horia L.
    Gridan, Ionut M.
    Zety, Adrian V.
    Baricz, Andreea
    [J]. EXTREMOPHILES, 2022, 26 (02)
  • [6] Adaptive linear step-up procedures that control the false discovery rate
    Benjamini, Yoav
    Krieger, Abba M.
    Yekutieli, Daniel
    [J]. BIOMETRIKA, 2006, 93 (03) : 491 - 507
  • [7] Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea
    Bowers, Robert M.
    Kyrpides, Nikos C.
    Stepanauskas, Ramunas
    Harmon-Smith, Miranda
    Doud, Devin
    Reddy, T. B. K.
    Schulz, Frederik
    Jarett, Jessica
    Rivers, Adam R.
    Eloe-Fadrosh, Emiley A.
    Tringe, Susannah G.
    Ivanova, Natalia N.
    Copeland, Alex
    Clum, Alicia
    Becraft, Eric D.
    Malmstrom, Rex R.
    Birren, Bruce
    Podar, Mircea
    Bork, Peer
    Weinstock, George M.
    Garrity, George M.
    Dodsworth, Jeremy A.
    Yooseph, Shibu
    Sutton, Granger
    Gloeckner, Frank O.
    Gilbert, Jack A.
    Nelson, William C.
    Hallam, Steven J.
    Jungbluth, Sean P.
    Ettema, Thijs J. G.
    Tighe, Scott
    Konstantinidis, Konstantinos T.
    Liu, Wen-Tso
    Baker, Brett J.
    Rattei, Thomas
    Eisen, Jonathan A.
    Hedlund, Brian
    McMahon, Katherine D.
    Fierer, Noah
    Knight, Rob
    Finn, Rob
    Cochrane, Guy
    Karsch-Mizrachi, Ilene
    Tyson, Gene W.
    Rinke, Christian
    Lapidus, Alla
    Meyer, Folker
    Yilmaz, Pelin
    Parks, Donovan H.
    Eren, A. M.
    [J]. NATURE BIOTECHNOLOGY, 2017, 35 (08) : 725 - 731
  • [8] Bushnell B., 2014, SourceForge
  • [9] Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model
    Cao, Yang
    Li, Lei
    [J]. BIOINFORMATICS, 2014, 30 (12) : 1674 - 1680
  • [10] trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses
    Capella-Gutierrez, Salvador
    Silla-Martinez, Jose M.
    Gabaldon, Toni
    [J]. BIOINFORMATICS, 2009, 25 (15) : 1972 - 1973