The multifaceted role of macrophage mitophagy in SiO2-induced pulmonary fibrosis: A brief review

被引:1
作者
Zhou, Yu-ting [1 ,2 ]
Li, Shuang [2 ]
Du, Shu-ling [2 ]
Zhao, Jia-hui [2 ]
Cai, Ya-qiong [3 ]
Zhang, Zhao-qiang [2 ]
机构
[1] Shandong First Med Univ, Dept Publ Hlth, Jinan, Peoples R China
[2] Jining Med Univ, Dept Publ Hlth, Jining, Shandong, Peoples R China
[3] Jining 1 Peoples Hosp, Jining, Shandong, Peoples R China
关键词
apoptosis; cell transdifferentiation; fibrosis-related cytokine; mitophagy; SiO2-induced pulmonary fibrosis; TGF-beta; 1; CELL-DEATH; INFLAMMATORY MEDIATORS; PARKIN; SILICA; MITOCHONDRIA; AUTOPHAGY; PINK1; UBIQUITIN; BETA; LUNG;
D O I
10.1002/jat.4612
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Prolonged exposure to environments with high concentrations of crystalline silica (CS) can lead to silicosis. Macrophages play a crucial role in the pathogenesis of silicosis. In the process of silicosis, silica (SiO2) invades alveolar macrophages (AMs) and induces mitophagy which usually exists in three states: normal, excessive, and/or deficiency. Different mitophagy states lead to corresponding toxic responses, including successful macrophage repair, injury, necrosis, apoptosis, and even pulmonary fibrosis. This is a complex process accompanied by various cytokines. Unfortunately, the details have not been fully systematically summarized. Therefore, it is necessary to elucidate the role of macrophage mitophagy in SiO2-induced pulmonary fibrosis by systematic analysis on the literature reports. In this review, we first summarized the current data on the macrophage mitophagy in the development of SiO2-induced pulmonary fibrosis. Then, we introduce the molecular mechanism on how SiO2-induced mitophagy causes pulmonary fibrosis. Finally, we focus on introducing new therapies based on newly developed mitophagy-inducing strategies. We conclude that macrophage mitophagy plays a multifaceted role in the progression of SiO2-induced pulmonary fibrosis, and reprogramming the macrophage mitophagy state accordingly may be a potential means of preventing and treating pulmonary fibrosis.
引用
收藏
页码:1854 / 1867
页数:14
相关论文
共 134 条
  • [1] microRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosis
    Ahangari, Farida
    Price, Nathan L.
    Malik, Shipra
    Chioccioli, Maurizio
    Barnthaler, Thomas
    Adams, Taylor S.
    Kim, Jooyoung
    Pradeep, Sai Pallavi
    Ding, Shuizi
    Cosmos Jr., Carlos
    Rose, Kadi-Ann S.
    McDonough, John E.
    Aurelien, Nachelle R.
    Ibarra, Gabriel
    Omote, Norihito
    Schupp, Jonas C.
    DeIuliis, Giuseppe
    Nunez, Julian A. Villalba
    Sharma, Lokesh
    Ryu, Changwan
    Dela Cruz, Charles S.
    Liu, Xinran
    Prasse, Antje
    Rosas, Ivan
    Bahal, Raman
    Fernandez-Hernando, Carlos
    Kaminski, Naftali
    [J]. JCI INSIGHT, 2023, 8 (04)
  • [2] IPF lung fibroblasts have a senescent phenotype
    Alvarez, Diana
    Cardenes, Nayra
    Sellares, Jacobo
    Bueno, Marta
    Corey, Catherine
    Hanumanthu, Vidya Sagar
    Peng, Yating
    D'Cunha, Hannah
    Sembrat, John
    Nouraie, Mehdi
    Shanker, Swaroop
    Caufield, Chandler
    Shiva, Sruti
    Armanios, Mary
    Mora, Ana L.
    Rojas, Mauricio
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2017, 313 (06) : L1164 - L1173
  • [3] Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks
    Anderson, Alexander J.
    Jackson, Thomas D.
    Stroud, David A.
    Stojanovski, Diana
    [J]. OPEN BIOLOGY, 2019, 9 (08)
  • [4] The pathways of mitophagy for quality control and clearance of mitochondria
    Ashrafi, G.
    Schwarz, T. L.
    [J]. CELL DEATH AND DIFFERENTIATION, 2013, 20 (01) : 31 - 42
  • [5] Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis
    Bandeira, Elga
    Oliveira, Helena
    Silva, Johnatas D.
    Menna-Barreto, Rubem F. S.
    Takyia, Christina M.
    Suk, Jung S.
    Witwer, Kenneth W.
    Paulaitis, Michael E.
    Hanes, Justin
    Rocco, Patricia R. M.
    Morales, Marcelo M.
    [J]. RESPIRATORY RESEARCH, 2018, 19
  • [6] Bao H., 2023, LIFE SCI, V66, P893, DOI [10.1007/s11427-023-2305-0, DOI 10.1007/S11427-023-2305-0]
  • [7] Silica-associated lung disease: An old-world exposure in modern industries
    Barnes, Hayley
    Goh, Nicole S. L.
    Leong, Tracy L.
    Hoy, Ryan
    [J]. RESPIROLOGY, 2019, 24 (12) : 1165 - 1175
  • [8] Metabolic Reprogramming Is Required for Myofibroblast Contractility and Differentiation
    Bernard, Karen
    Logsdon, Naomi J.
    Ravi, Saranya
    Xie, Na
    Persons, Benjamin P.
    Rangarajan, Sunad
    Zmijewski, Jaroslaw W.
    Mitra, Kasturi
    Liu, Gang
    Darley-Usmar, Victor M.
    Thannickal, Victor J.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (42) : 25427 - 25438
  • [9] Comparative proteomic analysis of silica-induced pulmonary fibrosis in rats based on tandem mass tag (TMT) quantitation technology
    Bo, Cunxiang
    Geng, Xiao
    Zhang, Juan
    Sai, Linlin
    Zhang, Yu
    Yu, Gongchang
    Zhang, Zhenling
    Liu, Kai
    Du, Zhongjun
    Peng, Cheng
    Jia, Qiang
    Shao, Hua
    [J]. PLOS ONE, 2020, 15 (10):
  • [10] Calcium, ATP, and ROS: a mitochondrial love-hate triangle
    Brookes, PS
    Yoon, YS
    Robotham, JL
    Anders, MW
    Sheu, SS
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2004, 287 (04): : C817 - C833