Continuous Online Learning-Based CSI Feedback in Massive MIMO Systems

被引:1
|
作者
Zhang, Xudong [1 ]
Wang, Jintao [1 ]
Lu, Zhilin [3 ]
Zhang, Hengyu [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Beijing Natl Res Ctr Informat Sci & Technol BNRist, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Lab High Technol, Beijing 100084, Peoples R China
关键词
Continuous learning; CSI feedback; deep learning; online learning; massive MIMO;
D O I
10.1109/LCOMM.2024.3350210
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
For massive multiple-input multiple-output (MIMO) systems, downlink channel state information (CSI) compression and feedback are crucial for enhancing system performance. Deep learning (DL)-based methods have been designed and proven to perform well in this task. However, the distribution of CSI in real-world communication systems may differ from the one observed during model training, which can undermine the effectiveness of DL-based methods due to their limited generalization ability. Several methods have been proposed to facilitate online training and enable network adaptation to unknown scenarios. Nevertheless, the knowledge learned from previous scenarios is often forgotten, leading to performance degradation when encountering a previous scenario again. In this letter, we propose a novel continuous learning-based CSI feedback approach, which can effectively address the challenge of catastrophic forgetting and ensure consistent high performances across all historical scenarios, thereby enhancing the generalization capability of the model.
引用
收藏
页码:557 / 561
页数:5
相关论文
共 50 条
  • [21] Deep Learning-Based Antenna Selection and CSI Extrapolation in Massive MIMO Systems
    Lin, Bo
    Gao, Feifei
    Zhang, Shun
    Zhou, Ting
    Alkhateeb, Ahmed
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7669 - 7681
  • [22] Deep Learning-Based CSI Feedback for Beamforming in Single- and Multi-Cell Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 1872 - 1884
  • [23] Deep Learning-Based CSI Feedback Approach for Time-Varying Massive MIMO Channels
    Wang, Tianqi
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (02) : 416 - 419
  • [24] Deep Learning-based Implicit CSI Feedback for Time-varying Massive MIMO Channels
    Jiang, Chengyong
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Hou, Xiaolin
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4955 - 4960
  • [25] Deep Learning-Based Cooperative CSI Feedback via Multiple Receiving Antennas in Massive MIMO
    Liang, Xin
    Shen, Jinghan
    Chang, Haoran
    Gu, Xinyu
    Zhang, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1373 - 1378
  • [26] Quantization Adaptor for Bit-Level Deep Learning-Based Massive MIMO CSI Feedback
    Zhang, Xudong
    Lu, Zhilin
    Zeng, Rui
    Wang, Jintao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5443 - 5453
  • [27] Deep Learning for Massive MIMO CSI Feedback
    Wen, Chao-Kai
    Shih, Wan-Ting
    Jin, Shi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) : 748 - 751
  • [28] Online Deep Learning-Based Channel Estimation for Massive MIMO Systems
    Zhen, Xuanyu
    Lau, Vincent
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [29] Variational AutoEncoder Based CSI Feedback for Massive MIMO Systems
    Swain, Anusaya
    Hiremath, Shrishail M.
    Patra, Sarat Kumar
    WIRELESS PERSONAL COMMUNICATIONS, 2023,
  • [30] A Novel Compression CSI Feedback based on Deep Learning for FDD Massive MIMO Systems
    Wang, Yuting
    Zhang, Yibin
    Sun, Jinlong
    Gui, Guan
    Ohtsuki, Tomoaki
    Adachi, Fumiyuki
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,