Continuous Online Learning-Based CSI Feedback in Massive MIMO Systems

被引:1
|
作者
Zhang, Xudong [1 ]
Wang, Jintao [1 ]
Lu, Zhilin [3 ]
Zhang, Hengyu [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Beijing Natl Res Ctr Informat Sci & Technol BNRist, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Lab High Technol, Beijing 100084, Peoples R China
关键词
Continuous learning; CSI feedback; deep learning; online learning; massive MIMO;
D O I
10.1109/LCOMM.2024.3350210
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
For massive multiple-input multiple-output (MIMO) systems, downlink channel state information (CSI) compression and feedback are crucial for enhancing system performance. Deep learning (DL)-based methods have been designed and proven to perform well in this task. However, the distribution of CSI in real-world communication systems may differ from the one observed during model training, which can undermine the effectiveness of DL-based methods due to their limited generalization ability. Several methods have been proposed to facilitate online training and enable network adaptation to unknown scenarios. Nevertheless, the knowledge learned from previous scenarios is often forgotten, leading to performance degradation when encountering a previous scenario again. In this letter, we propose a novel continuous learning-based CSI feedback approach, which can effectively address the challenge of catastrophic forgetting and ensure consistent high performances across all historical scenarios, thereby enhancing the generalization capability of the model.
引用
收藏
页码:557 / 561
页数:5
相关论文
共 50 条
  • [1] Manifold Learning-Based CSI Feedback in Massive MIMO Systems
    Cao, Yandi
    Yin, Haifan
    He, Gaoning
    Debbah, Merouane
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 225 - 230
  • [2] Unsupervised Online Learning in Deep Learning-Based Massive MIMO CSI Feedback
    Cui, Yiming
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Han, Shuangfeng
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (09) : 2086 - 2090
  • [3] Sparsity Learning-Based CSI Feedback for FDD Massive MIMO Systems
    Zeng, Wenbo
    He, Yigang
    Li, Bing
    Wang, Shudong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 585 - 588
  • [4] Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 8017 - 8045
  • [5] Deep Learning-Based Massive MIMO CSI Feedback
    Li, Jialing
    Zhang, Qi
    Xin, Xiangjun
    Tao, Ying
    Tian, Qinghua
    Tian, Feng
    Chen, Dong
    Shen, Yufei
    Cao, Guixing
    Gao, Zihe
    Qian, Jinxi
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [6] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [7] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [8] Learning-Based Integrated CSI Feedback and Localization in Massive MIMO
    Guo, Jiajia
    Lv, Yan
    Wen, Chao-Kai
    Li, Xiao
    Jin, Shi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 14988 - 15001
  • [9] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [10] Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems
    Li, Yuling
    Guo, Aihuang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (08) : 1413 - 1416