Equipment Health Assessment: Time Series Analysis for Wind Turbine Performance

被引:8
作者
Backhus, Jana [1 ]
Rao, Aniruddha Rajendra [1 ]
Venkatraman, Chandrasekar [1 ]
Padmanabhan, Abhishek [2 ]
Kumar, A. Vinoth [3 ]
Gupta, Chetan [1 ]
机构
[1] Hitachi Amer Ltd, Ind AI Lab, R&D, Santa Clara, CA 95054 USA
[2] Atria Univ, Ctr Excellence Energy Sci, Bengaluru 560024, India
[3] Atria Brindavan Power Pvt Ltd, Bangalore 560025, India
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 08期
关键词
SCADA data; time series; wind turbine; prediction; classification; ensemble; POWER OUTPUT; PREDICTION; MODELS; MAINTENANCE;
D O I
10.3390/app14083270
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we leverage SCADA data from diverse wind turbines to predict power output, employing advanced time series methods, specifically Functional Neural Networks (FNN) and Long Short-Term Memory (LSTM) networks. A key innovation lies in the ensemble of FNN and LSTM models, capitalizing on their collective learning. This ensemble approach outperforms individual models, ensuring stable and accurate power output predictions. Additionally, machine learning techniques are applied to detect wind turbine performance deterioration, enabling proactive maintenance strategies and health assessment. Crucially, our analysis reveals the uniqueness of each wind turbine, necessitating tailored models for optimal predictions. These insight underscores the importance of providing automatized customization for different turbines to keep human modeling effort low. Importantly, the methodologies developed in this analysis are not limited to wind turbines; they can be extended to predict and optimize performance in various machinery, highlighting the versatility and applicability of our research across diverse industrial contexts.
引用
收藏
页数:20
相关论文
共 47 条
[31]   Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model [J].
Sabino Parmezan, Antonio Rafael ;
Souza, Vinicius M. A. ;
Batista, Gustavo E. A. P. A. .
INFORMATION SCIENCES, 2019, 484 :302-337
[32]   Ensemble learning: A survey [J].
Sagi, Omer ;
Rokach, Lior .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 8 (04)
[33]   A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks [J].
Santolamazza, Annalisa ;
Dadi, Daniele ;
Introna, Vito .
ENERGIES, 2021, 14 (07)
[34]   Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model [J].
Song, Xuanyi ;
Liu, Yuetian ;
Xue, Liang ;
Wang, Jun ;
Zhang, Jingzhe ;
Wang, Junqiang ;
Jiang, Long ;
Cheng, Ziyan .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 186
[35]   Using SCADA data for wind turbine condition monitoring - a review [J].
Tautz-Weinert, Jannis ;
Watson, Simon J. .
IET RENEWABLE POWER GENERATION, 2017, 11 (04) :382-394
[36]  
Theocharides S, 2018, IEEE INT ENER CONF
[37]  
Tian Y, 2021, J MACH LEARN RES, V22
[38]   Identification of Criteria for Enabling the Adoption of Sustainable Maintenance Practice: An Umbrella Review [J].
Vasic, Stana ;
Orosnjak, Marko ;
Brkljac, Nebojsa ;
Vrhovac, Vijoleta ;
Ristic, Kristina .
SUSTAINABILITY, 2024, 16 (02)
[39]   Grand challenges in the science of wind energy [J].
Veers, Paul ;
Dykes, Katherine ;
Lantz, Eric ;
Barth, Stephan ;
Bottasso, Carlo L. ;
Carlson, Ola ;
Clifton, Andrew ;
Green, Johney ;
Green, Peter ;
Holttinen, Hannele ;
Laird, Daniel ;
Lehtomaki, Ville ;
Lundquist, Julie K. ;
Manwell, James ;
Marquis, Melinda ;
Meneveau, Charles ;
Moriarty, Patrick ;
Munduate, Xabier ;
Muskulus, Michael ;
Naughton, Jonathan ;
Pao, Lucy ;
Paquette, Joshua ;
Peinke, Joachim ;
Robertson, Amy ;
Sanz Rodrigo, Javier ;
Sempreviva, Anna Maria ;
Smith, J. Charles ;
Tuohy, Aidan ;
Wiser, Ryan .
SCIENCE, 2019, 366 (6464) :443-+
[40]   Fault diagnosis and prediction of wind turbine gearbox based on a new hybrid model [J].
Wang, Haifeng ;
Zhao, Xingyu ;
Wang, Weijun .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (09) :24506-24520