Equipment Health Assessment: Time Series Analysis for Wind Turbine Performance

被引:8
作者
Backhus, Jana [1 ]
Rao, Aniruddha Rajendra [1 ]
Venkatraman, Chandrasekar [1 ]
Padmanabhan, Abhishek [2 ]
Kumar, A. Vinoth [3 ]
Gupta, Chetan [1 ]
机构
[1] Hitachi Amer Ltd, Ind AI Lab, R&D, Santa Clara, CA 95054 USA
[2] Atria Univ, Ctr Excellence Energy Sci, Bengaluru 560024, India
[3] Atria Brindavan Power Pvt Ltd, Bangalore 560025, India
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 08期
关键词
SCADA data; time series; wind turbine; prediction; classification; ensemble; POWER OUTPUT; PREDICTION; MODELS; MAINTENANCE;
D O I
10.3390/app14083270
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we leverage SCADA data from diverse wind turbines to predict power output, employing advanced time series methods, specifically Functional Neural Networks (FNN) and Long Short-Term Memory (LSTM) networks. A key innovation lies in the ensemble of FNN and LSTM models, capitalizing on their collective learning. This ensemble approach outperforms individual models, ensuring stable and accurate power output predictions. Additionally, machine learning techniques are applied to detect wind turbine performance deterioration, enabling proactive maintenance strategies and health assessment. Crucially, our analysis reveals the uniqueness of each wind turbine, necessitating tailored models for optimal predictions. These insight underscores the importance of providing automatized customization for different turbines to keep human modeling effort low. Importantly, the methodologies developed in this analysis are not limited to wind turbines; they can be extended to predict and optimize performance in various machinery, highlighting the versatility and applicability of our research across diverse industrial contexts.
引用
收藏
页数:20
相关论文
共 47 条
[1]   Condition Monitoring of Wind Turbine Systems by Explainable Artificial Intelligence Techniques [J].
Astolfi, Davide ;
De Caro, Fabrizio ;
Vaccaro, Alfredo .
SENSORS, 2023, 23 (12)
[2]   Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis [J].
Astolfi, Davide ;
Pandit, Ravi ;
Terzi, Ludovico ;
Lombardi, Andrea .
ENERGIES, 2022, 15 (15)
[3]  
Backhus J., 2022, P 2022 INT C SOFTWAR, P1
[4]   Comparison of different physical models for PV power output prediction [J].
Dolara, Alberto ;
Leva, Sonia ;
Manzolini, Giampaolo .
SOLAR ENERGY, 2015, 119 :83-99
[5]  
Ferraty F., 2011, Oxford Handbooks Online
[6]   Maintenance for Sustainability in the Industry 4.0 context: a Scoping Literature Review [J].
Franciosi, Chiara ;
Iung, Benoit ;
Miranda, Salvatore ;
Riemma, Stefano .
IFAC PAPERSONLINE, 2018, 51 (11) :903-908
[7]   Climate change impacts on renewable energy supply [J].
Gernaat, David E. H. J. ;
de Boer, Harmen Sytze ;
Daioglou, Vassilis ;
Yalew, Seleshi G. ;
Muller, Christoph ;
van Vuuren, Detlef P. .
NATURE CLIMATE CHANGE, 2021, 11 (02) :119-125
[8]   A Review of Ensemble Learning Based Feature Selection [J].
Guan, Donghai ;
Yuan, Weiwei ;
Lee, Young-Koo ;
Najeebullah, Kamran ;
Rasel, Mostofa Kamal .
IETE TECHNICAL REVIEW, 2014, 31 (03) :190-198
[9]   A Review of Deep Learning Models for Time Series Prediction [J].
Han, Zhongyang ;
Zhao, Jun ;
Leung, Henry ;
Ma, King Fai ;
Wang, Wei .
IEEE SENSORS JOURNAL, 2021, 21 (06) :7833-7848
[10]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]