Quantitatively rating galaxy simulations against real observations with anomaly detection

被引:0
作者
Jin, Zehao [1 ,2 ]
Maccio, Andrea, V [1 ,2 ,3 ]
Faucher, Nicholas [4 ]
Pasquato, Mario [1 ,2 ,5 ,6 ,7 ]
Buck, Tobias [8 ,9 ]
Dixon, Keri L. [1 ,2 ]
Arora, Nikhil [1 ,2 ,10 ]
Blank, Marvin [1 ,2 ]
Vulanovic, Pavle [1 ,2 ]
机构
[1] NYU Abu Dhabi, POB 129188,Saadiyat Isl, Abu Dhabi, U Arab Emirates
[2] NYU Abu Dhabi, Ctr Astrophys & Space Sci CASS, Abu Dhabi, U Arab Emirates
[3] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[4] NYU, Ctr Cosmol & Particle Phys, Dept Phys, 726 Broadway, New York, NY 10003 USA
[5] Univ Padua, Phys & Astron Dept Galileo Galilei, Vicolo Osservatorio 3, I-35122 Padua, Italy
[6] Univ Montreal, Dept Phys, 1375 Ave Therese Lavoie Roux, Montreal, PQ H2V 0B3, Canada
[7] Mila Quebec Artificial Intelligence Inst, 6666 Rue St Urbain, Montreal, PQ H2S3H1, Canada
[8] Heidelberg Univ, Interdisziplinares Zent Wissenschaftl Rechnen, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[9] Heidelberg Univ, Inst Theoret Astrophys, Zent Astron, Albert Ueberle Str 2, D-69120 Heidelberg, Germany
[10] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
关键词
methods: data analysis; methods: numerical; methods: statistical; galaxies: evolution; galaxies: formation; quasars: supermassive black holes; DIGITAL SKY SURVEY; COLD DARK-MATTER; CUSP-CORE TRANSFORMATION; RADIATIVE-TRANSFER CODE; STAR-FORMATION; MILKY-WAY; ILLUSTRIS SIMULATION; DOMINATED GALAXIES; MESA ISOCHRONES; DWARF GALAXIES;
D O I
10.1093/mnras/stae552
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cosmological galaxy formation simulations are powerful tools to understand the complex processes that govern the formation and evolution of galaxies. However, evaluating the realism of these simulations remains a challenge. The two common approaches for evaluating galaxy simulations is either through scaling relations based on a few key physical galaxy properties, or through a set of pre-defined morphological parameters based on galaxy images. This paper proposes a novel image-based method for evaluating the quality of galaxy simulations using unsupervised deep learning anomaly detection techniques. By comparing full galaxy images, our approach can identify and quantify discrepancies between simulated and observed galaxies. As a demonstration, we apply this method to SDSS imaging and NIHAO simulations with different physics models, parameters, and resolution. We further compare the metric of our method to scaling relations as well as morphological parameters. We show that anomaly detection is able to capture similarities and differences between real and simulated objects that scaling relations and morphological parameters are unable to cover, thus indeed providing a new point of view to validate and calibrate cosmological simulations against observed data.
引用
收藏
页码:3536 / 3549
页数:14
相关论文
共 114 条
[111]   NIHAO - XXVIII. Collateral effects of AGN on dark matter concentration and stellar kinematics [J].
Waterval, Stefan ;
Elgamal, Sana ;
Nori, Matteo ;
Pasquato, Mario ;
Maccio, Andrea, V ;
Blank, Marvin ;
Dixon, Keri L. ;
Kang, Xi ;
Ibrayev, Tengiz .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 514 (04) :5307-5319
[112]   A Study of the Point-spread Function in SDSS Images [J].
Xin, Bo ;
Ivezic, Zeljko ;
Lupton, Robert H. ;
Peterson, John R. ;
Yoachim, Peter ;
Jones, R. Lynne ;
Claver, Charles F. ;
Angeli, George .
ASTRONOMICAL JOURNAL, 2018, 156 (05)
[113]   A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations [J].
Zanisi, Lorenzo ;
Huertas-Company, Marc ;
Lanusse, Francois ;
Bottrell, Connor ;
Pillepich, Annalisa ;
Nelson, Dylan ;
Rodriguez-Gomez, Vicente ;
Shankar, Francesco ;
Hernquist, Lars ;
Dekel, Avishai ;
Margalef-Bentabol, Berta ;
Vogelsberger, Mark ;
Primack, Joel .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 501 (03) :4359-4382
[114]  
Zenati H, 2019, Arxiv, DOI [arXiv:1802.06222, 10.48550/arXiv.1802.06222, DOI 10.48550/ARXIV.1802.06222]