Current Knowledge of Base Editing and Prime Editing

被引:4
作者
Averina, O. A. [1 ,2 ,3 ]
Kuznetsova, S. A. [1 ]
Permyakov, O. A. [1 ,3 ]
Sergiev, P. V. [1 ,2 ,3 ]
机构
[1] Moscow State Univ, Inst Funct Genom, Moscow 119991, Russia
[2] Moscow State Univ, Belozersky Inst Physico Chem Biol, Moscow 119991, Russia
[3] Moscow State Univ, Chem Fac, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
CRISPR/Cas technology; base editing; nucleoside deaminases; prime editing; reverse transcriptase; repair systems; GENOMIC DNA; OFF-TARGET; CRISPR-CAS9; EDITORS;
D O I
10.1134/S0026893324700195
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modern genetic engineering technologies, such as base editing and prime editing (PE), have proven to provide the efficient and reliable genome editing tools that obviate the need for donor templates and double-strand breaks (DSBs) introduced in DNA. Relatively new, they quickly gained recognition for their accuracy, simplicity, and multiplexing capabilities. The review summarizes the new literature on the technologies and considers their architecture, methods to create editors, specificity, efficiency, and versatility. Advantages and disadvantages of the editors are discussed along with their prospective use in basic and applied research. The review may be useful for planning genome editing studies and analyzing their results to solve various problems of fundamental biology, biotechnology, medicine, and agriculture.
引用
收藏
页码:571 / 587
页数:17
相关论文
共 117 条
[1]  
Aida T., 2020, bioRxiv
[2]   Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing [J].
Anzalone, Andrew, V ;
Gao, Xin D. ;
Podracky, Christopher J. ;
Nelson, Andrew T. ;
Koblan, Luke W. ;
Raguram, Aditya ;
Levy, Jonathan M. ;
Mercer, Jaron A. M. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2022, 40 (05) :731-+
[3]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[4]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[5]   Comparative Analysis of Genome Editors Efficiency on a Model of Mice Zygotes Microinjection [J].
Averina, Olga A. ;
Permyakov, Oleg A. ;
Grigorieva, Olga O. ;
Starshin, Alexey S. ;
Mazur, Alexander M. ;
Prokhortchouk, Egor B. ;
Dontsova, Olga A. ;
Sergiev, Petr, V .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
[6]   CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons [J].
Billon, Pierre ;
Bryant, Eric E. ;
Joseph, Sarah A. ;
Nambiar, Tarun S. ;
Hayward, Samuel B. ;
Rothstein, Rodney ;
Ciccia, Alberto .
MOLECULAR CELL, 2017, 67 (06) :1068-+
[7]   Precise genome engineering in Drosophila using prime editing [J].
Bosch, Justin A. ;
Birchak, Gabriel ;
Perrimon, Norbert .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (01)
[8]   Minimal PAM specificity of a highly similar SpCas9 ortholog [J].
Chatterjee, Pranam ;
Jakimo, Noah ;
Jacobson, Joseph M. .
SCIENCE ADVANCES, 2018, 4 (10)
[9]   Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins [J].
Chen, Liwei ;
Park, Jung Eun ;
Paa, Peter ;
Rajakumar, Priscilla D. ;
Prekop, Hong-Ting ;
Chew, Yi Ting ;
Manivannan, Swathi N. ;
Chew, Wei Leong .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Enhanced prime editing systems by manipulating cellular determinants of editing outcomes [J].
Chen, Peter J. ;
Hussmann, Jeffrey A. ;
Yan, Jun ;
Knipping, Friederike ;
Ravisankar, Purnima ;
Chen, Pin-Fang ;
Chen, Cidi ;
Nelson, James W. ;
Newby, Gregory A. ;
Sahin, Mustafa ;
Osborn, Mark J. ;
Weissman, Jonathan S. ;
Adamson, Britt ;
Liu, David R. .
CELL, 2021, 184 (22) :5635-+