Insight into uniform filming of LiF-rich interphase via synergistic adsorption for high-performance lithium metal anode

被引:14
作者
He, Yufang [1 ]
Wang, Li [1 ]
Wang, Aiping [1 ]
Zhang, Bo [1 ]
Pham, Hiep [2 ]
Park, Jonghyun [2 ]
He, Xiangming [1 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[2] Missouri Univ Sci & Technol, Dept Mech Engn & Aerosp Engn, Rolla, MO 65401 USA
来源
EXPLORATION | 2024年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
LiF-rich solid electrolyte interphase; lithium metal anode; additive-derived species; synergistic adsorption; film growth mechanism; SOLID-ELECTROLYTE INTERPHASE; VINYLENE CARBONATE VC; FLUOROETHYLENE CARBONATE; DENDRITE GROWTH; ION; BATTERIES; INTERFACES; SALT; SEI; NANOSTRUCTURE;
D O I
10.1002/EXP.20230114
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multi-scale simulation is an important basis for constructing digital batteries to improve battery design and application. LiF-rich solid electrolyte interphase (SEI) is experimentally proven to be crucial for the electrochemical performance of lithium metal batteries. However, the LiF-rich SEI is sensitive to various electrolyte formulas and the fundamental mechanism is still unclear. Herein, the structure and formation mechanism of LiF-rich SEI in different electrolyte formulas have been reviewed. On this basis, it further discussed the possible filming mechanism of LiF-rich SEI determined by the initial adsorption of the electrolyte-derived species on the lithium metal anode (LMA). It proposed that individual LiF species follow the Volmer-Weber mode of film growth due to its poor wettability on LMA. Whereas, the synergistic adsorption of additive-derived species with LiF promotes the Frank-Vander Merwe mode of film growth, resulting in uniform LiF deposition on the LMA surface. This perspective provides new insight into the correlation between high LiF content, wettability of LiF, and highperformance of uniform LiF-rich SEI. It disclosed the importance of additive assistant synergistic adsorption on the uniform growth of LiF-rich SEI, contributing to the reasonable design of electrolyte formulas and high-performance LMA, and enlightening the way for multi-scale simulation of SEI. The LiF wettable and lithiophilic additive-derived species induce synergistic adsorption with LiF, promoting tiny LiF deposition on the lithium metal anode surface, which provides new insight into the correlation between high LiF content, wettability of LiF, and high-performance LiF-rich solid electrolyte interphase. image
引用
收藏
页数:9
相关论文
共 98 条
[1]   Lithium Batteries and the Solid Electrolyte Interphase (SEI)-Progress and Outlook [J].
Adenusi, Henry ;
Chass, Gregory A. ;
Passerini, Stefano ;
Tian, Kun V. ;
Chen, Guanhua .
ADVANCED ENERGY MATERIALS, 2023, 13 (10)
[2]   Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Pollard, Travis P. ;
Wang, Xuefeng ;
Lee, Jungwoo Z. ;
Zhang, Minghao ;
Wynn, Thomas ;
Ding, Michael ;
Borodin, Oleg ;
Meng, Ying Shirley ;
Xu, Kang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :780-794
[3]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[4]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[5]   Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries [J].
Benitez, Laura ;
Seminario, Jorge M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) :E3159-E3170
[6]   Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes [J].
Brown, Zachary L. ;
Jurng, Sunhyung ;
Cao Cuong Nguyen ;
Lucht, Brett L. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :3057-3062
[7]   Controlling Li deposition below the interface [J].
Cao, Wenzhuo ;
Li, Quan ;
Yu, Xiqian ;
Li, Hong .
ESCIENCE, 2022, 2 (01) :47-78
[8]   Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Li, Qin ;
Yang, Hongbin ;
Khoshi, M. Reza ;
Xu, Yaobin ;
Hwang, Sooyeon ;
Chen, Long ;
Ji, Xiao ;
Yang, Chongyin ;
He, Huixin ;
Wang, Chongmin ;
Garfunkel, Eric ;
Su, Dong ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE ENERGY, 2020, 5 (05) :386-397
[9]   Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries [J].
Chen, Libao ;
Wang, Ke ;
Xie, Xiaohua ;
Xie, Jingying .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :538-543
[10]   Armoring LiNi1/3Co1/3Mn1/3O2 Cathode with Reliable Fluorinated Organic-Inorganic Hybrid Interphase Layer toward Durable High Rate Battery [J].
Chen Yu ;
Zhao Weimin ;
Zhang Quanhai ;
Yang Guangzhi ;
Zheng Jianming ;
Tang Wei ;
Xu Qunjie ;
Lai Chunyan ;
Yang Junhe ;
Peng Chengxin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (19)