Lyapunov-type inequalities for Hilfer fractional boundary value problems

被引:0
作者
Jonnalagadda, Jagan Mohan [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad 500078, Telangana, India
关键词
Hilfer-Hadamard fractional derivative; boundary value problem; Green's function; Lyapunov-type inequality;
D O I
10.1142/S1793557124500153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with fractional boundary value problems involving the Hilfer-Hadamard fractional differential operator of order 1 < alpha <= 2 and type 0 <= beta <= 1. We derive the corresponding Lyapunov-type inequalities for two prominent classes of Hilfer-Hadamard fractional boundary value problems (HFBVPs) involving separated and anti-periodic boundary conditions. For this purpose, we construct the associated Green's functions and deduce their important properties.
引用
收藏
页数:15
相关论文
共 14 条
[1]  
Agarwal R.P., 2021, Lyapunov Inequalities and Applications
[2]  
Cheng S.S., 1983, Hokkaido Math. J, V12, P105, DOI [10.14492/hokmj/1381757783, DOI 10.14492/HOKMJ/1381757783]
[3]   A Lyapunov-type inequality for a fractional boundary value problem [J].
Ferreira, Rui A. C. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) :978-984
[4]  
Hilfer R., 2000, Applications of Fractional Calculus in Physics
[5]   OPERATIONAL CALCULUS FOR THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE WITH RESPECT TO A FUNCTION AND ITS APPLICATIONS [J].
Fahad, Hafiz Muhammad ;
Fernandez, Arran .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (02) :518-540
[6]  
Kilbas A.A., 2006, THEORY APPL FRACTION, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[7]  
Lyapunov A., 1907, ANN FACUL SCI TOULOU, V2, P203, DOI [10.5802/afst.246, DOI 10.5802/AFST.246]
[8]  
Ntouyas S. K., 2022, FRACTAL FRACT, V6, P1
[9]  
Ntouyas S.K., 2019, Differential and Integral Inequalities
[10]  
Pinasco JP, 2013, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-1-4614-8523-0