Activated Green Tamarind Pulp (AGTP) as an efficient adsorbent for removal of Pb2+, Cu2+, Zn2+& Ni2+from contaminated water

被引:10
|
作者
Fatma, Ummul Khair [1 ]
Nizami, Gulrez [1 ]
Ahamad, Shakir [2 ]
Saquib, Mohammad [3 ]
Hussain, Mohd Kamil [4 ]
机构
[1] Mohammad Ali Jauhar Univ, Sir Syed Fac Sci, Dept Biochem, Rampur 244901, India
[2] Aligarh Muslim Univ, Dept Chem, Aligarh 202002, India
[3] Univ Allahabad, Dept Chem, Prayagraj 211002, India
[4] Govt Raza PG Coll, Dept Chem, Rampur 244901, India
关键词
Heavy metals; Toxicity; Bio-adsorbent; Adsorption; Activated Green Tamarind Pulp; HEAVY-METALS; ADSORPTION; EQUILIBRIUM; BIOSORPTION; LEAD(II); KINETICS; IONS; ZINC;
D O I
10.1016/j.jwpe.2024.105048
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Activated Green Tamarind Pulp (AGTP) was explored as a cost-effective, eco-friendly adsorbent to remove Pb2+, Cu2+, Zn2+, and Ni2+ ions from contaminated water. Given the environmental significance of heavy metal remediation, this study aimed to assess the efficacy of various AGTP formulations under diverse conditions affecting adsorption properties, including adsorbent dose, solution pH, shaking time, shaking speed, temperature, and particle size. The investigation encompassed a comprehensive evaluation of Pb2+, Cu2+, Zn2+, and Ni2+ adsorption on AGTP, considering different isotherms and kinetics. Additionally, we employed SEM, XRD, FTIR, and TGA to characterize AGTP before and after adsorption, providing a comprehensive understanding of its adsorption behavior. The experimental data revealed a fitting to the Langmuir isotherm for equilibrium adsorption and a pseudosecond -order model for the adsorption process. Thermodynamic parameters (Delta H degrees, Delta S degrees, Delta G degrees) indicated that AGTP-mediated adsorption of all these heavy metal ions was applicable, spontaneous, and endothermic. Under optimized conditions, AGTP demonstrated maximum elimination efficiencies of 98.14 %, 85.30 %, 94.98 %, and 93.05 % for Pb2+, Cu2+, Zn2+, and Ni2+ ions, respectively. This study underscores AGTP as a promising solution for environmentally conscious and efficient removal of heavy metal pollutants from water sources.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Competitive removal of Cu2+, Cd2+, Zn2+, and Ni2+ ions onto iron oxide nanoparticles from wastewater
    Ebrahim, Shahlaa E.
    Sulaymon, Abbas H.
    Alhares, Hasanain Saad
    DESALINATION AND WATER TREATMENT, 2016, 57 (44) : 20915 - 20929
  • [42] Preparation of Functionalized Graphene Oxide Composite Spheres and Removal of Cu2+ and Pb2+ from Wastewater
    Zhang, Huining
    Liu, Xingmao
    Tian, Lihong
    Tang, Yuling
    Shi, Zhongyu
    Xiao, Yankui
    Wu, Zhiguo
    Zhu, Ying
    Guo, Qi
    Peng, Zhangpu
    WATER AIR AND SOIL POLLUTION, 2022, 233 (12)
  • [43] Preparation of Activated Carbon From Olive Stone Waste: Optimization Study on the Removal of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ from Aqueous Solution Using Response Surface Methodology
    Alslaibi, Tamer M.
    Abustan, Ismail
    Ahmad, Mohd Azmier
    Abu Foul, Ahmad
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2014, 35 (07) : 913 - 925
  • [44] Mg-Al layered double hydroxides modified clay adsorbents for efficient removal of Pb2+, Cu2+ and Ni2+ from water
    Yang, Facui
    Sun, Shiqi
    Chen, Xiaoqi
    Chang, Yue
    Zha, Fei
    Lei, Zigiang
    APPLIED CLAY SCIENCE, 2016, 123 : 134 - 140
  • [45] Novel chelating polyacrylonitrile membrane for efficient capture of Cu2+, Pb2+ and Fe3+
    Qi, Jing
    He, Xiao
    Lu, Qingye
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [46] Optimization of Zn2+, Cd2+, Pb2+ and Cu2+ determination in the coastal water by using voltammetry
    Mohamed, Khairul Nizam
    Ramjam, Nur Jannati
    Qing, Ng Li
    Junairi, Aleef Syamim
    Ruzahan, Nur Izzati
    Razak, Abdul Rahman Hashimi Abdul
    Ghani, Mohamad Azrul
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (03):
  • [47] Removal of Pb2+, Cd2+, and Cu2+ from phosphoric acid solution using the chitosan-modified natural zeolite
    Kussainova, M. Z.
    Chernyakov, R. M.
    Jussipbekov, U. Z.
    Pasa, S.
    Temel, H.
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2015, 10 (06) : 833 - 841
  • [48] Removal of Cu2+ from Aqueous Solution by Alkaline-activated Konjac Glucomannan
    Luo, Xuegang
    Liu, Feng
    Lin, Xiaoyan
    MATERIALS RESEARCH, PTS 1 AND 2, 2009, 610-613 : 9 - 13
  • [49] Efficacy of Sargassum filipendula for the removal of Pb2+, Cd2+ and Ni2+ ions from aqueous solution: a comparative study
    Verma, Ayushi
    Kumar, Shashi
    Balomajumder, Chandrajit
    Kumar, Surendra
    DESALINATION AND WATER TREATMENT, 2018, 129 : 216 - 226
  • [50] Study of Adsorbent Derived from Exhausted Olive Pomace for the Removal of Pb2+ and Zn2+ from Aqueous Solutions
    Elouear, Zouhair
    Bouzid, Jalel
    Boujelben, Nesrine
    Ben Amor, Rim
    ENVIRONMENTAL ENGINEERING SCIENCE, 2009, 26 (04) : 767 - 774