Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults

被引:0
|
作者
Brand, Yonatan E. [1 ,2 ]
Kluge, Felix [3 ]
Palmerini, Luca [4 ,5 ]
Paraschiv-Ionescu, Anisoara [6 ]
Becker, Clemens [7 ,8 ]
Cereatti, Andrea [9 ]
Maetzler, Walter [10 ]
Sharrack, Basil [11 ,12 ]
Vereijken, Beatrix [13 ]
Yarnall, Alison J. [14 ,15 ,16 ]
Rochester, Lynn [14 ,15 ,16 ]
Del Din, Silvia [14 ,16 ]
Muller, Arne [3 ]
Buchman, Aron S. [17 ]
Hausdorff, Jeffrey M. [2 ,18 ,19 ,20 ,21 ]
Perlman, Or [1 ,19 ]
机构
[1] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
[2] Tel Aviv Sourasky Med Ctr, Neurol Inst, Ctr Study Movement Cognit & Mobil, Tel Aviv, Israel
[3] Novartis Pharm AG, Biomed Res, Basel, Switzerland
[4] Univ Bologna, Dept Elect Elect & Informat Engn Guglielmo Marconi, Bologna, Italy
[5] Univ Bologna, Hlth Sci & Technol Interdept Ctr Ind Res CIRI SDV, Bologna, Italy
[6] Ecole Polytech Fed Lausanne, Lab Movement Anal & Measurement, Lausanne, Switzerland
[7] Robert Bosch Gesell Med Forsch, Stuttgart, Germany
[8] Univ Klinikum Heidelberg, Unit Digitale Geriatrie, Heidelberg, Germany
[9] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[10] Univ Med Ctr Schleswig Holstein, Dept Neurol, Campus Kiel, Kiel, Germany
[11] Sheffield Teaching Hosp NHS Fdn Trust, Dept Neurosci, Sheffield, England
[12] Sheffield Teaching Hosp NHS Fdn Trust, Sheffield NIHR Translat Neurosci BRC, Sheffield, England
[13] Norwegian Univ Sci & Technol, Dept Neuromed & Movement Sci, Trondheim, Norway
[14] Newcastle Univ, Translat & Clin Res Inst, Fac Med Sci, Newcastle Upon Tyne, Northumberland, England
[15] Newcastle Tyne Hosp NHS Fdn Trust, Newcastle Upon Tyne, England
[16] Newcastle Univ, Newcastle Tyne Hosp NHS Fdn Trust, Natl Inst Hlth & Care Res NIHR, Newcastle Biomed Res Ctr BRC, Newcastle Upon Tyne, England
[17] Rush Univ, Med Ctr, Rush Alzheimers Dis Ctr, Dept Neurol Sci, Chicago, IL USA
[18] Tel Aviv Univ, Fac Med & Hlth Sci, Dept Phys Therapy, Tel Aviv, Israel
[19] Tel Aviv Univ, Sagol Sch Neurosci, Tel Aviv, Israel
[20] Rush Univ, Rush Alzheimers Dis Ctr, Chicago, IL USA
[21] Rush Univ, Dept Orthoped Surg, Chicago, IL USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
美国国家卫生研究院;
关键词
Gait; Machine learning; Older adults; Self-supervised learning; Accelerometer; PHYSICAL-ACTIVITY; RUSH MEMORY; MOBILITY; SPEED; RISK;
D O I
10.1038/s41598-024-71491-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Progressive gait impairment is common among aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 +/- 2.27), specificity (98.87 +/- 2.15), recall (82.32 +/- 11.37), precision (86.69 +/- 17.61), and F1 score (82.92 +/- 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults, even among those with gait impairments.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Self-supervised Deep Learning Model for Diagonal Sulcus Detection with Limited Labeled Data
    Braggio, Delfina
    Kulsgaard, Hernan C.
    Vallejo-Azar, Mariana
    Bendersky, Mariana
    Gonzalez, Paula
    Alba-Ferrara, Lucia
    Orlando, Jose Ignacio
    Larrabide, Ignacio
    NEUROINFORMATICS, 2025, 23 (01) : 16 - 17
  • [32] Vestibular perceptual learning improves self-motion perception, posture, and gait in older adults
    Fitze, Daniel C.
    Ertl, Matthias
    Radlinger, Lorenz
    Mast, Fred W.
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [33] Self-supervised learning improves dMMR/MSI detection from histology slides across multiple cancers
    Saillard, Charlie
    Dehaene, Olivier
    Marchand, Tanguy
    Moindrot, Olivier
    Kamoun, Aurelie
    Schmauch, Benoit
    Jegou, Simon
    MICCAI WORKSHOP ON COMPUTATIONAL PATHOLOGY, VOL 156, 2021, 156 : 191 - 205
  • [34] Self-supervised learning for automated anatomical tracking in medical image data with minimal human labeling effort
    Frueh, Marcel
    Kuestner, Thomas
    Nachbar, Marcel
    Thorwarth, Daniela
    Schilling, Andreas
    Gatidis, Sergios
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 225
  • [35] CutPaste-ROI: An Industrial Anomaly Data Detection Method based on Self-supervised Learning
    Yang, Le
    Yang, Wenhan
    Wang, Zhengsong
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2024, 68 (02)
  • [36] RAPID WILDFIRE HOTSPOT DETECTION USING SELF-SUPERVISED LEARNING ON TEMPORAL REMOTE SENSING DATA
    Barco, Luca
    Urbanelli, Angelica
    Rossi, Claudio
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 2061 - 2065
  • [37] Data-driven prognostic method based on self-supervised learning approaches for fault detection
    Tian Wang
    Meina Qiao
    Mengyi Zhang
    Yi Yang
    Hichem Snoussi
    Journal of Intelligent Manufacturing, 2020, 31 : 1611 - 1619
  • [38] Using unlabelled self-supervised machine learning to reduce the amount of data required for seizure detection
    Partovi, Andisheh
    Goodarzy, Farhad
    Burkitt, Anthony
    Grayden, David
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 : S46 - S47
  • [39] Data-driven prognostic method based on self-supervised learning approaches for fault detection
    Wang, Tian
    Qiao, Meina
    Zhang, Mengyi
    Yang, Yi
    Snoussi, Hichem
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (07) : 1611 - 1619
  • [40] Self-supervised contrastive learning of radio data for source detection, classification and peculiar object discovery
    Riggi, S.
    Cecconello, T.
    Palazzo, S.
    Hopkins, A. M.
    Gupta, N.
    Bordiu, C.
    Ingallinera, A.
    Buemi, C.
    Bufano, F.
    Cavallaro, F.
    Filipovic, M. D.
    Leto, P.
    Loru, S.
    Ruggeri, A. C.
    Trigilio, C.
    Umana, G.
    Vitello, F.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2024, 41