Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults

被引:0
|
作者
Brand, Yonatan E. [1 ,2 ]
Kluge, Felix [3 ]
Palmerini, Luca [4 ,5 ]
Paraschiv-Ionescu, Anisoara [6 ]
Becker, Clemens [7 ,8 ]
Cereatti, Andrea [9 ]
Maetzler, Walter [10 ]
Sharrack, Basil [11 ,12 ]
Vereijken, Beatrix [13 ]
Yarnall, Alison J. [14 ,15 ,16 ]
Rochester, Lynn [14 ,15 ,16 ]
Del Din, Silvia [14 ,16 ]
Muller, Arne [3 ]
Buchman, Aron S. [17 ]
Hausdorff, Jeffrey M. [2 ,18 ,19 ,20 ,21 ]
Perlman, Or [1 ,19 ]
机构
[1] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
[2] Tel Aviv Sourasky Med Ctr, Neurol Inst, Ctr Study Movement Cognit & Mobil, Tel Aviv, Israel
[3] Novartis Pharm AG, Biomed Res, Basel, Switzerland
[4] Univ Bologna, Dept Elect Elect & Informat Engn Guglielmo Marconi, Bologna, Italy
[5] Univ Bologna, Hlth Sci & Technol Interdept Ctr Ind Res CIRI SDV, Bologna, Italy
[6] Ecole Polytech Fed Lausanne, Lab Movement Anal & Measurement, Lausanne, Switzerland
[7] Robert Bosch Gesell Med Forsch, Stuttgart, Germany
[8] Univ Klinikum Heidelberg, Unit Digitale Geriatrie, Heidelberg, Germany
[9] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[10] Univ Med Ctr Schleswig Holstein, Dept Neurol, Campus Kiel, Kiel, Germany
[11] Sheffield Teaching Hosp NHS Fdn Trust, Dept Neurosci, Sheffield, England
[12] Sheffield Teaching Hosp NHS Fdn Trust, Sheffield NIHR Translat Neurosci BRC, Sheffield, England
[13] Norwegian Univ Sci & Technol, Dept Neuromed & Movement Sci, Trondheim, Norway
[14] Newcastle Univ, Translat & Clin Res Inst, Fac Med Sci, Newcastle Upon Tyne, Northumberland, England
[15] Newcastle Tyne Hosp NHS Fdn Trust, Newcastle Upon Tyne, England
[16] Newcastle Univ, Newcastle Tyne Hosp NHS Fdn Trust, Natl Inst Hlth & Care Res NIHR, Newcastle Biomed Res Ctr BRC, Newcastle Upon Tyne, England
[17] Rush Univ, Med Ctr, Rush Alzheimers Dis Ctr, Dept Neurol Sci, Chicago, IL USA
[18] Tel Aviv Univ, Fac Med & Hlth Sci, Dept Phys Therapy, Tel Aviv, Israel
[19] Tel Aviv Univ, Sagol Sch Neurosci, Tel Aviv, Israel
[20] Rush Univ, Rush Alzheimers Dis Ctr, Chicago, IL USA
[21] Rush Univ, Dept Orthoped Surg, Chicago, IL USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
美国国家卫生研究院;
关键词
Gait; Machine learning; Older adults; Self-supervised learning; Accelerometer; PHYSICAL-ACTIVITY; RUSH MEMORY; MOBILITY; SPEED; RISK;
D O I
10.1038/s41598-024-71491-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Progressive gait impairment is common among aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 +/- 2.27), specificity (98.87 +/- 2.15), recall (82.32 +/- 11.37), precision (86.69 +/- 17.61), and F1 score (82.92 +/- 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults, even among those with gait impairments.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Personalized gait detection using a wrist-worn accelerometer
    Cola, Guglielmo
    Avvenuti, Marco
    Musso, Fabio
    Vecchio, Alessio
    2017 IEEE 14TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN), 2017, : 173 - 177
  • [2] Gait Detection from a Wrist-Worn Sensor Using Machine Learning Methods: A Daily Living Study in Older Adults and People with Parkinson's Disease
    Brand, Yonatan E.
    Schwartz, Dafna
    Gazit, Eran
    Buchman, Aron S.
    Gilad-Bachrach, Ran
    Hausdorff, Jeffrey M.
    SENSORS, 2022, 22 (18)
  • [3] Gait Pattern Analysis of Older Adults via Radar Micro-Doppler Signatures and Wrist-worn Accelerometer Data
    Ahmad, Fauzia
    Adl, Zahra Sadeghi
    Hagen, Cole
    Hiremath, Shivayogi, V
    Uhl, Astrid
    Ferretti, Lisa
    McCallion, Philip
    RADAR SENSOR TECHNOLOGY XXVIII, 2024, 13048
  • [4] Quantification of Daily-Living Gait Quantity and Quality Using a Wrist-Worn Accelerometer in Huntington's Disease
    Keren, Karin
    Busse, Monica
    Fritz, Nora E.
    Muratori, Lisa M.
    Gazit, Eran
    Hillel, Inbar
    Scheinowitz, Micky
    Gurevich, Tanya
    Inbar, Noit
    Omer, Nurit
    Hausdorff, Jeffrey M.
    Quinn, Lori
    FRONTIERS IN NEUROLOGY, 2021, 12
  • [5] Self-Supervised Machine Learning to Characterize Step Counts from Wrist-Worn Accelerometers in the UK Biobank
    Small, Scott R.
    Chan, Shing
    Walmsley, Rosemary
    Von Fritsch, Lennart
    Acquah, Aidan
    Mertes, Gert
    Feakins, Benjamin G.
    Creagh, Andrew
    Strange, Adam
    Matthews, Charles E.
    Clifton, David A.
    Price, Andrew J.
    Khalid, Sara
    Bennett, Derrick
    Doherty, Aiden
    MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2024, 56 (10) : 1945 - 1953
  • [6] Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch
    Chen, Lin
    Li, Rong
    Zhang, Hang
    Tian, Lili
    Chen, Ning
    MEASUREMENT, 2019, 140 : 215 - 226
  • [7] Wrist fracture detection using self-supervised learning methodology
    Thorat, Sachin Ramdas
    Jha, Davendranath G.
    Sharma, Ashish K.
    Katkar, Dhanraj, V
    JOURNAL OF MUSCULOSKELETAL SURGERY AND RESEARCH, 2024, 8 (02) : 133 - 141
  • [8] A COMPARISON OF HIP-WORN AND WRIST-WORN ACTIGRAPH DATA IN LOW-ACTIVE OLDER ADULTS WITH OBESITY.
    Robison, Justin
    Miller, Michael E.
    Chen, Shyh-huei
    Rejeski, W. Jack
    Furlipa, Joy
    Fanning, Jason
    ANNALS OF BEHAVIORAL MEDICINE, 2022, 56 (SUPP 1) : S97 - S97
  • [9] Non-Consent to a Wrist-Worn Accelerometer in Older Adults: The Role of Socio-Demographic, Behavioural and Health Factors
    Hassani, Maliheh
    Kivimaki, Mika
    Elbaz, Alexis
    Shipley, Martin
    Singh-Manoux, Archana
    Sabia, Severine
    PLOS ONE, 2014, 9 (10):
  • [10] Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning
    Kiprijanovska, Ivana
    Gjoreski, Hristijan
    Gams, Matjaz
    SENSORS, 2020, 20 (18) : 1 - 21