Adaptive and parameterised 3D BIM model for the tunnel tender and excavation phase

被引:1
作者
Wenighofer R. [1 ]
Eder N. [1 ]
Speckmoser V. [1 ]
Villeneuve M. [1 ]
Winkler L. [2 ]
Galler R. [1 ]
机构
[1] Montanuniversität Leoben, Chair of Subsurface Engineering, Erzherzog Johann Straße 3/III, Leoben
[2] Institut für Interdisziplinäres Bauprozessmanagement, Technische Universität Wien, Karlsplatz 13/234, Wien
来源
Geomechanik und Tunnelbau | 2022年 / 15卷 / 03期
关键词
building information modelling (BIM); Construction works; design; Railway tunnels; Road tunnels; Support; tender; tunnelling;
D O I
10.1002/geot.202100075
中图分类号
学科分类号
摘要
Building information modelling (BIM) is a frequently discussed topic in tunnelling since it promises less loss of information and reduced lifetime cost of underground infrastructure. There is still some way to go as standardisation in this sector is immature, the implementation of three-dimensional (3D) BIM models is developed for pilot cases of tunnelling only, and data transfer between software tools is a challenge. The long linear structures of tunnels make a specific approach of parameterised and adaptive modelling necessary to meet the requirements of repetitive construction elements and the natural differences of forecast and actual excavation conditions. This approach renders the matching of construction elements in the model and service items feasible for determining quantities for the tender and billing in tunnel projects. In this article, we show that only 57 % of service items can actually be linked to a physical item in traditional two-dimensional (2D) design and highlight the need to consider how to incorporate these items into a BIM model. We also use a case study to propose an approach for parameterised and adaptive modelling of repetitive construction elements and show a way of a continuous data transfer from the forecast tunnelling class distribution via 3D BIM modelling to a billing software without data loss. © 2022 Ernst & Sohn GmbH.
引用
收藏
页码:272 / 278
页数:6
相关论文
共 10 条
[1]  
Borrmann A., Konig M., Beetz J., Koch C., Building Information Modelling. Technologische Grundlagen und industrielle Praxis, (2015)
[2]  
Costin A., Adibfar A., Hu H., Chen S., Building Information Modeling (BIM) for transportation infrastructure – Literature review, applications, challenges, and recommendations, Automation in Construction, 94, pp. 257-281, (2018)
[3]  
Lai H., Deng X., Interoperability analysis of IFC-ased data exchange between heterogeneous BIM software, Journal of Civil Engineering and Management, 24, 7, pp. 537-555, (2018)
[4]  
Olawumi T., Chan D., Wong J., Evolution in the intellectual structure of BIM research: a bibliometric analysis, Journal of Civil Engineering and Mangement, 23, 8, pp. 1060-1081, (2017)
[5]  
Cheng J., Deng Y., Analytical review and evaluation of civil information modeling, Automation in Construction, 67, pp. 31-47, (2016)
[6]  
Standisierte Leistungsbeschreibung, Verkehr und Infrastruktur (LB-VI), Version 6, FSV-VI-006 20210501, (2021)
[7]  
Galler R., Research@ZaB – Start of construction of the “ZaB–Zentrum am Berg“ research and development, training and education centre, Geomechanics and Tunnelling, 9, 6, pp. 715-725, (2016)
[8]  
Speckmoser V., Überprüfung der Ausschreibungsunterlagen des Projekts „ZaB – Zentrum am Berg“ auf BIM-Fähigkeit, (2021)
[9]  
Eder N., Ein 3D BIM Ausschreibungsmodell des ZaB-Zentrum am Berg, (2021)
[10]  
Austausch von Daten in elektronischer Form für die Phasen Ausschreibung, Vergabe und Abrechnung (AVA), pp. A2063-A2061, (2021)