Shape reconstruction of acoustic obstacle with linear sampling method and neural network

被引:0
作者
Tang, Bowen [1 ]
Yang, Xiaoying [1 ]
Su, Lin [2 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, 3000 Beiyuanda Ave, Changchun 130000, Jilin, Peoples R China
[2] Wuxi Weintdata Technol Co Ltd, 2 Longshan Rd, Wuxi 214000, Jiangsu, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
inverse acoustic scattering problems; linear sampling method; neural network; shape reconstruction of obstacles; INVERSE SCATTERING PROBLEM;
D O I
10.3934/math.2024664
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse scattering problem of reconstructing the boundary of an obstacle by using far -field data. With the plane wave as the incident wave, a priori information of the impenetrable obstacle can be obtained via the linear sampling method. We have constructed the shape parameter inversion model based on a neural network to reconstruct the obstacle. Numerical experimental results demonstrate that the model proposed in this paper is robust and performs well with a small number of observation directions.
引用
收藏
页码:13607 / 13623
页数:17
相关论文
共 38 条
  • [1] Determining a sound-soft polyhedral scatterer by a single far-field measurement
    Alessandrini, G
    Rondi, L
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1685 - 1691
  • [2] Why linear sampling works
    Arens, T
    [J]. INVERSE PROBLEMS, 2004, 20 (01) : 163 - 173
  • [3] Borcea L., 2015, Inverse problems and imaging, panoramas et Syntheses
  • [4] Cakoni F., 2014, A Qualitative Approach to Inverse Scattering Theory, DOI [10.1007/978-1-4614-8827-9, DOI 10.1007/978-1-4614-8827-9]
  • [5] TWO SINGLE-MEASUREMENT UNIQUENESS RESULTS FOR INVERSE SCATTERING PROBLEMS WITHIN POLYHEDRAL GEOMETRIES
    Cao, Xinlin
    Diao, Huaian
    Liu, Hongyu
    Zou, J. U. N.
    [J]. INVERSE PROBLEMS AND IMAGING, 2022,
  • [6] On nodal and generalized singular structures of Laplacian eigenfunctions and applications to inverse scattering problems
    Cao, Xinlin
    Diao, Huaian
    Liu, Hongyu
    Zou, Jun
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 : 116 - 161
  • [7] A simple method for solving inverse scattering problems in the resonance region
    Colton, D
    Kirsch, A
    [J]. INVERSE PROBLEMS, 1996, 12 (04) : 383 - 393
  • [8] Using fundamental solutions in inverse scattering
    Colton, David
    Kress, Rainer
    [J]. INVERSE PROBLEMS, 2006, 22 (03) : R49 - R66
  • [9] Diao H., 2023, Spectral geometry and inverse scattering theory, DOI [10.1007/978-3-031-34615-6, DOI 10.1007/978-3-031-34615-6]
  • [10] Shape reconstructions by using plasmon resonances with enhanced sensitivity
    Ding, Ming-Hui
    Liu, Hongyu
    Zheng, Guang-Hui
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 486