Prediction of Aureococcus anophageffens using machine learning and deep learning

被引:0
|
作者
Niu, Jie [1 ]
Lu, Yanqun [2 ]
Xie, Mengyu [2 ]
Ou, Linjian [2 ]
Cui, Lei [2 ]
Qiu, Han [3 ]
Lu, Songhui [2 ,4 ]
机构
[1] Guizhou Univ, Coll Resources & Environm Engn, Guiyang 550025, Peoples R China
[2] Jinan Univ, Coll Life Sci & Technol, Sch Environm, Guangzhou 510632, Peoples R China
[3] Pacific Northwest Natl Lab, Atmospher Climate & Earth Sci Div, Richland, WA USA
[4] Southern Marine Sci & Engn Guangdong Lab, Zhuhai 519000, Peoples R China
关键词
Aureococcus anophagefferens; Brown tide; Machine learning; Deep learning; Variable importance analysis; RANDOM FOREST; COASTAL WATERS; PHYTOPLANKTON; QINHUANGDAO; COMMUNITY; NITROGEN; MODELS; BLOOMS;
D O I
10.1016/j.marpolbul.2024.116148
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The recurrent brown tide phenomenon, attributed to Aureococcus anophagefferens (A. anophagefferens), constitutes a significant threat to the Qinhuangdao sea area in China, leading to pronounced ecological degradation and substantial economic losses. This study utilized machine learning and deep learning techniques to predict A. anophagefferens population density, aiming to elucidate the occurrence mechanism and influencing factors of brown tide. Specifically, Random Forest (RF) algorithm was utilized to impute missing water quality data, facilitating its direct application in subsequent algal population prediction models. The results revealed that all four models-RF, Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Convolutional Neural Network (CNN)-exhibited high accuracy in predicting A. anophagefferens population densities, with R2 values exceeding 0.75. RF, in particular, showed exceptional accuracy and reliability, with an R2 value surpassing 0.8. Additionally, the study ascertained five critical factors influencing A. anophagefferens population density: ammonia nitrogen, pH, total nitrogen, temperature, and silicate.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Dropout prediction in Moocs using deep learning and machine learning
    Basnet, Ram B.
    Johnson, Clayton
    Doleck, Tenzin
    EDUCATION AND INFORMATION TECHNOLOGIES, 2022, 27 (08) : 11499 - 11513
  • [2] Dropout prediction in Moocs using deep learning and machine learning
    Ram B. Basnet
    Clayton Johnson
    Tenzin Doleck
    Education and Information Technologies, 2022, 27 : 11499 - 11513
  • [3] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ayus, Ishan
    Natarajan, Narayanan
    Gupta, Deepak
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (04) : 2437 - 2447
  • [4] Prediction of Preeclampsia Using Machine Learning and Deep Learning Models: A Review
    Aljameel, Sumayh S.
    Alzahrani, Manar
    Almusharraf, Reem
    Altukhais, Majd
    Alshaia, Sadeem
    Sahlouli, Hanan
    Aslam, Nida
    Khan, Irfan Ullah
    Alabbad, Dina A.
    Alsumayt, Albandari
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (01)
  • [5] Portfolio optimization with return prediction using deep learning and machine learning
    Ma, Yilin
    Han, Ruizhu
    Wang, Weizhong
    Expert Systems with Applications, 2021, 165
  • [6] Review of bankruptcy prediction using machine learning and deep learning techniques
    Qu, Yi
    Quan, Pei
    Lei, Minglong
    Shi, Yong
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 895 - 899
  • [7] Wind Power Prediction Using Machine Learning and Deep Learning Algorithms
    Simsek, Ecem
    Gungor, Aysemuge
    Karavelioglu, Oyku
    Yerli, Mustafa Tolga
    Kuyumcuoglu, Nejat Goktug
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [8] Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning
    Bharti, Rohit
    Khamparia, Aditya
    Shabaz, Mohammad
    Dhiman, Gaurav
    Pande, Sagar
    Singh, Parneet
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [9] Portfolio optimization with return prediction using deep learning and machine learning
    Ma, Yilin
    Han, Ruizhu
    Wang, Weizhong
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
  • [10] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ishan Ayus
    Narayanan Natarajan
    Deepak Gupta
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 2437 - 2447