Prediction of Aureococcus anophageffens using machine learning and deep learning

被引:0
作者
Niu, Jie [1 ]
Lu, Yanqun [2 ]
Xie, Mengyu [2 ]
Ou, Linjian [2 ]
Cui, Lei [2 ]
Qiu, Han [3 ]
Lu, Songhui [2 ,4 ]
机构
[1] Guizhou Univ, Coll Resources & Environm Engn, Guiyang 550025, Peoples R China
[2] Jinan Univ, Coll Life Sci & Technol, Sch Environm, Guangzhou 510632, Peoples R China
[3] Pacific Northwest Natl Lab, Atmospher Climate & Earth Sci Div, Richland, WA USA
[4] Southern Marine Sci & Engn Guangdong Lab, Zhuhai 519000, Peoples R China
关键词
Aureococcus anophagefferens; Brown tide; Machine learning; Deep learning; Variable importance analysis; RANDOM FOREST; COASTAL WATERS; PHYTOPLANKTON; QINHUANGDAO; COMMUNITY; NITROGEN; MODELS; BLOOMS;
D O I
10.1016/j.marpolbul.2024.116148
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The recurrent brown tide phenomenon, attributed to Aureococcus anophagefferens (A. anophagefferens), constitutes a significant threat to the Qinhuangdao sea area in China, leading to pronounced ecological degradation and substantial economic losses. This study utilized machine learning and deep learning techniques to predict A. anophagefferens population density, aiming to elucidate the occurrence mechanism and influencing factors of brown tide. Specifically, Random Forest (RF) algorithm was utilized to impute missing water quality data, facilitating its direct application in subsequent algal population prediction models. The results revealed that all four models-RF, Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Convolutional Neural Network (CNN)-exhibited high accuracy in predicting A. anophagefferens population densities, with R2 values exceeding 0.75. RF, in particular, showed exceptional accuracy and reliability, with an R2 value surpassing 0.8. Additionally, the study ascertained five critical factors influencing A. anophagefferens population density: ammonia nitrogen, pH, total nitrogen, temperature, and silicate.
引用
收藏
页数:16
相关论文
共 47 条
  • [1] Stream water quality prediction using boosted regression tree and random forest models
    Alnahit, Ali O.
    Mishra, Ashok K.
    Khan, Abdul A.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (09) : 2661 - 2680
  • [2] [Anonymous], 2010, Bulletin of Marine Disaster of China
  • [3] Random Forest model and TRIX used in combination to assess and diagnose the trophic status of Bizerte Lagoon, southern Mediterranean
    Bejaoui, Bechir
    Armi, Zina
    Ottaviani, Ennio
    Barelli, Enrico
    Gargouri-Ellouz, Emna
    Cherif, Rim
    Turki, Souad
    Solidoro, Cosimo
    Aleya, Lotfi
    [J]. ECOLOGICAL INDICATORS, 2016, 71 : 293 - 301
  • [4] BENDSCHNEIDER K, 1952, J MAR RES, V11, P87
  • [5] Statistical modeling: The two cultures
    Breiman, L
    [J]. STATISTICAL SCIENCE, 2001, 16 (03) : 199 - 215
  • [6] EFFECTS OF THE TEXAS (USA) BROWN-TIDE ALGA ON PLANKTONIC GRAZERS
    BUSKEY, EJ
    HYATT, CJ
    [J]. MARINE ECOLOGY PROGRESS SERIES, 1995, 126 (1-3) : 285 - 292
  • [7] Estimation of high frequency nutrient concentrations from water quality surrogates using machine learning methods
    Castrillo, Maria
    Lopez Garcia, Alvaro
    [J]. WATER RESEARCH, 2020, 172
  • [8] Measurement of cyanobacteria using in-vivo fluoroscopy - Effect of cyanobacterial species, pigments, and colonies
    Chang, De-Wei
    Hobson, Peter
    Burch, Michael
    Lin, Tsair-Fuh
    [J]. WATER RESEARCH, 2012, 46 (16) : 5037 - 5048
  • [9] Cosper E.M., 1989, NOVEL PHYTOPLANKTON, P317, DOI [10.1007/978-3-642-75280-3_18, DOI 10.1007/978-3-642-75280-3_18]
  • [10] Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: A region with recurrent brown tide outbreaks
    Cui, Lei
    Lu, Xinxin
    Dong, Yuelei
    Cen, Jingyi
    Cao, Rongbo
    Pan, Lin
    Lu, Songhui
    Ou, Linjian
    [J]. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2018, 159 : 85 - 93