A generalization of Bondy's pancyclicity theorem

被引:0
作者
Draganic, Nemanja [1 ]
Correia, David Munha [2 ]
Sudakov, Benny [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] ETH, Dept Math, Zurich, Switzerland
关键词
Pancyclicity; Hamiltonicity; Dirac's theorem; minimum degree; bipartite independence number; McDiarmid and Yolov; cycle spectrum; Bondy's meta-conjecture; rotation-extension technique; HAMILTON DECOMPOSITIONS; MINIMUM DEGREE; CYCLE LENGTHS; GRAPHS;
D O I
10.1017/S0963548324000075
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The bipartite independence number of a graph $G$ , denoted as $\tilde \alpha (G)$ , is the minimal number $k$ such that there exist positive integers $a$ and $b$ with $a+b=k+1$ with the property that for any two disjoint sets $A,B\subseteq V(G)$ with $|A|=a$ and $|B|=b$ , there is an edge between $A$ and $B$ . McDiarmid and Yolov showed that if $\delta (G)\geq \tilde \alpha (G)$ then $G$ is Hamiltonian, extending the famous theorem of Dirac which states that if $\delta (G)\geq |G|/2$ then $G$ is Hamiltonian. In 1973, Bondy showed that, unless $G$ is a complete bipartite graph, Dirac's Hamiltonicity condition also implies pancyclicity, i.e., existence of cycles of all the lengths from $3$ up to $n$ . In this paper, we show that $\delta (G)\geq \tilde \alpha (G)$ implies that $G$ is pancyclic or that $G=K_{\frac{n}{2},\frac{n}{2}}$ , thus extending the result of McDiarmid and Yolov, and generalizing the classic theorem of Bondy.
引用
收藏
页码:554 / 563
页数:10
相关论文
共 36 条
[1]  
Ajtai M., 1985, CYCLES GRAPHS BURNAB, V115, P173
[2]   Divisible subdivisions [J].
Alon, Noga ;
Krivelevich, Michael .
JOURNAL OF GRAPH THEORY, 2021, 98 (04) :623-629
[3]   Cycle lengths in sparse random graphs [J].
Alon, Yahav ;
Krivelevich, Michael ;
Lubetzky, Eyal .
RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (03) :444-461
[4]   HAMILTONIAN DEGREE CONDITIONS WHICH IMPLY A GRAPH IS PANCYCLIC [J].
BAUER, D ;
SCHMEICHEL, E .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) :111-116
[5]  
Bondy J. A., 1973, C MATH SOC JAN BOL K, P181
[6]  
Bondy J.A., 1971, J. Combinatorial Theory Ser. B, V11, P80, DOI [10.1016/0095-8956(71)90016-5, DOI 10.1016/0095-8956(71)90016-5]
[7]  
Bondy J.A., 1980, LONGEST PATHS CYCLES
[8]   Cycles of many lengths in Hamiltonian graphs [J].
Bucic, Matija ;
Gishboliner, Lior ;
Sudakov, Benny .
FORUM OF MATHEMATICS SIGMA, 2022, 10
[9]   Hamilton-connected, vertex-pancyclic and bipartite holes [J].
Chen, Ming .
DISCRETE MATHEMATICS, 2022, 345 (12)
[10]  
Chvatal V., 1972, J COMB THEORY, V12, P163, DOI [10.1016/0095-8956(72)90020-2, DOI 10.1016/0095-8956(72)90020-2]