Magic angles in equal-twist trilayer graphene

被引:5
作者
Popov F.K. [1 ,2 ]
Tarnopolsky G. [1 ,2 ]
机构
[1] Department of Physics, New York University, New York, 10003, NY
[2] Department of Physics, Carnegie Mellon University, Pennsylvania, Pennsylvania
关键词
D O I
10.1103/PhysRevB.108.L081124
中图分类号
学科分类号
摘要
We consider a configuration of three stacked graphene monolayers with equal consecutive twist angles Formula Presented. Remarkably, in the chiral limit when interlayer coupling terms between Formula Presented sites of the moiré pattern are neglected we find four perfectly flat bands (per valley and spin) at a sequence of magic angles which are exactly equal to the twisted bilayer graphene (TBG) magic angles divided by Formula Presented. Therefore, the first magic angle for equal-twist trilayer graphene (eTTG) in the chiral limit is Formula Presented. We prove this relation analytically and show that the Bloch states of the eTTG's flat bands are nonlinearly related to those of TBG. Additionally, we show that at the magic angles, the upper and lower bands must touch the four exactly flat bands at the Dirac point of the middle graphene layer. Finally, we explore the eTTG's spectrum away from the chiral limit through numerical analysis. ©2023 American Physical Society.
引用
收藏
相关论文
共 68 条
[1]  
Bistritzer R., MacDonald A. H., Moiré bands in twisted double-layer graphene, Proc. Natl. Acad. Sci. USA, 108, (2011)
[2]  
Suarez Morell E., Correa J. D., Vargas P., Pacheco M., Barticevic Z., Flat bands in slightly twisted bilayer graphene: Tight-binding calculations, Phys. Rev. B, 82, (2010)
[3]  
Cao Y., Fatemi V., Fang S., Watanabe K., Taniguchi T., Kaxiras E., Jarillo-Herrero P., Unconventional superconductivity in magic-angle graphene superlattices, Nature (London), 556, (2018)
[4]  
Cao Y., Fatemi V., Demir A., Fang S., Tomarken S. L., Luo J. Y., Sanchez-Yamagishi J. D., Watanabe K., Taniguchi T., Kaxiras E., Ashoori R. C., Jarillo-Herrero P., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature (London), 556, (2018)
[5]  
Yankowitz M., Chen S., Polshyn H., Zhang Y., Watanabe K., Taniguchi T., Graf D., Young A. F., Dean C. R., Tuning superconductivity in twisted bilayer graphene, Science, 363, (2019)
[6]  
Po H. C., Zou L., Vishwanath A., Senthil T., Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene, Phys. Rev. X, 8, (2018)
[7]  
Thomson A., Chatterjee S., Sachdev S., Scheurer M. S., Triangular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene, Phys. Rev. B, 98, (2018)
[8]  
Zou L., Po H. C., Vishwanath A., Senthil T., Band structure of twisted bilayer graphene: Emergent symmetries, commensurate approximants, and Wannier obstructions, Phys. Rev. B, 98, (2018)
[9]  
Guinea F., Walet N. R., Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers, Proc. Natl. Acad. Sci. USA, 115, (2018)
[10]  
Carr S., Fang S., Jarillo-Herrero P., Kaxiras E., Pressure dependence of the magic twist angle in graphene superlattices, Phys. Rev. B, 98, (2018)