In-situ X-ray computed tomography of high-temperature tensile behavior for laser powder bed fused Invar 36 alloy

被引:3
|
作者
Yang, Qidong [1 ]
Wei, Kai [1 ,3 ]
Qu, Zhaoliang [2 ]
Yang, Xujing [1 ]
Fang, Daining [2 ]
机构
[1] Hunan Univ, Key Lab Adv Design & Simulat Tech Special Equipmen, Minist Educ, Changsha 410082, Peoples R China
[2] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China
[3] Cent South Univ, State Key Lab Precis Mfg Extreme Serv Performance, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser powder bed fusion; Invar; 36; alloy; High-temperature tensile behavior; Pore defects; Nanoprecipitate; THERMAL-EXPANSION COEFFICIENTS; STAINLESS-STEEL; YIELD STRENGTH; STRAIN-RATE; 316L; MICROSTRUCTURE; DEFORMATION; INCLUSIONS;
D O I
10.1016/j.addma.2024.104072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The laser powder bed fusion (PBF-LB) process provides great potential for additive manufacturing of Invar 36 alloy, which possesses a unique low coefficient of thermal expansion. However, the high-temperature tensile behavior of PBF-LB processed Invar 36 alloy has not been explored, severely restricting its applications. Hence, herein, in-situ X-ray computed tomography (XCT) tensile tests were conducted at 200 degrees C and 600 degrees C for PBF-LB processed Invar 36 alloy, and the microstructure after heat treatment, fracture morphology, post -mortem microstructure, and nano-precipitates were observed. The in-situ XCT analysis of damage evolution reveals that the tensile behavior at elevated temperatures is sensitive to numerous closely spaced lack-of-fusion (LOF) pores with relatively large equivalent diameters, distributed in the adjacent melt pools or deposited layers. These LOF pores promote the stress concentration and facilitate rapid crack propagation, resulting in a significantly diminished strength and ductility. In contrast, the small number of metallurgical and keyhole pores, possessing large spacing and relatively high sphericity, have negligible influence on the tensile behavior. Therefore, Invar 36 alloy with only metallurgical and keyhole pores can be considered defect-free, displaying an excellent yield strength of 360.0 MPa and a considerable elongation of 65.0% at 200 degrees C. However, as the temperature increases to 600 degrees C, both the yield strength and elongation show a marked decrease to 150.0 MPa and 5.4%, respectively. This weakening is accompanied by the observation of a brittle fracture and the formation of secondary cracks. The degradation in mechanical properties can be attributed to the decomposition of Cr-containing SiP2O7, which leads to the formation of numerous small-sized SiO2 and P2O5 precipitates at 600 degrees C. These precipitates induce embrittlement of the grain boundaries and contribute to the formation of secondary cracks. The anomalous brittle fracture observed is attributed to the intergranular fracture mode, which results from the low grain boundary energy as well as the decomposition of nanoprecipitates. Additionally, the perpendicular orientation of flatter columnar grain boundaries to the loading direction plays a role in the formation of secondary cracks. This high-temperature mechanical performance of strength, elongation, failure mode, and corresponding microcosmic mechanism advances the understanding and widespread application of PBF-LB processed Invar 36 alloy.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] High-Temperature Tensile Properties of Hastelloy X Produced by Laser Powder Bed Fusion with Different Heat Treatments
    Liu, Minghao
    Zeng, Qi
    Hua, Yuting
    Zheng, Wenpeng
    Wu, Yuxia
    Jin, Yan
    Li, Yuanyuan
    Wang, Jiangwei
    Zhang, Kai
    METALS, 2022, 12 (09)
  • [32] Three-Dimensional X-Ray Computed Tomography Image Segmentation and Point Cloud Reconstruction for Internal Defect Identification in Laser Powder Bed Fused Parts
    Xu, Boyang
    Ouidadi, Hasnaa
    Handel, Nicole Van
    Guo, Shenghan
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (09):
  • [33] Development of a Novel High-Temperature Al Alloy for Laser Powder Bed Fusion
    Belelli, Filippo
    Casati, Riccardo
    Riccio, Martina
    Rizzi, Alessandro
    Kayacan, Mevlut Y.
    Vedani, Maurizio
    METALS, 2021, 11 (01) : 1 - 12
  • [34] In-situ X-ray computed tomography of decompression failure in a rubber exposed to high-pressure gas
    Castagnet, Sylvie
    Mellier, David
    Nait-Ali, Azdine
    Benoit, Guillaume
    POLYMER TESTING, 2018, 70 : 255 - 262
  • [35] Investigation on the moderately high-temperature tensile behavior of the laser powder bed fusion-fabricated 17-4 PH steel
    Li, Qinghua
    Zhu, Xiaoqing
    Yang, Laishan
    Ma, Rui
    Zhou, Shouzhen
    Wang, Han
    Han, Fang
    Zhang, Zhihang
    Li, Chengkun
    Wang, Chengcheng
    Dong, Zhibo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 915
  • [36] SCC behaviour of laser powder bed fused 316L stainless steel in high-temperature water at 288 °C
    Que, Zaiqing
    Riipinen, Tuomas
    Goel, Sneha
    Revuelta, Alejandro
    Saario, Timo
    Sipila, Konsta
    Toivonen, Aki
    CORROSION SCIENCE, 2023, 214
  • [37] In situ synchrotron X-ray imaging of 4140 steel laser powder bed fusion
    Bobel, Andrew
    Hector, Louis G., Jr.
    Chelladurai, Isaac
    Sachdev, Anil K.
    Brown, Tyson
    Poling, Whitney A.
    Kubic, Robert
    Gould, Benjamin
    Zhao, Cang
    Parab, Niranjan
    Greco, Aaron
    Sun, Tao
    MATERIALIA, 2019, 6
  • [38] Achieving superior tensile strength of CoCrFeNiTi0.3 high-entropy alloy via in-situ laser powder bed fusion of CoCrFeNi and Ti
    Li, Jingjing
    Ouyang, Di
    Wang, Qihang
    Teng, Qing
    Cai, Chao
    Wei, Qingsong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 886
  • [39] High-Temperature Steam Oxidation Behavior of VDM Alloy 699 XA Produced by Laser Powder Bed Fusion
    Dudziak, T.
    Chandran, P.
    Nowak, B.
    Verma, B.
    Roth, J. -p.
    Rzad, E.
    Chat-Wilk, K.
    Polkowska, A.
    Samy, V. Narayana
    Reich, S.
    Jahns, K.
    Krupp, U.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (23) : 13583 - 13595
  • [40] High-temperature fretting wear behavior of IN738LC alloy formed by laser powder bed fusion
    Hu, Yong
    Zhang, Xu
    Jia, Huibin
    Yang, Xiaokang
    Chai, Liqiang
    Wang, Shaohui
    TRIBOLOGY INTERNATIONAL, 2024, 199