Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting

被引:5
|
作者
Wu, Di [1 ,2 ]
Peng, Kai [1 ,2 ]
Wang, Shangguang [3 ]
Leung, Victor C. M. [4 ,5 ]
机构
[1] Huaqiao Univ, Coll Engn, Quanzhou 362021, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[4] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[5] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 08期
基金
美国国家科学基金会;
关键词
Graph attention networks (GATs); spatial-temporal dependencies; traffic flow forecasting; transformer; NEURAL-NETWORKS;
D O I
10.1109/JIOT.2023.3340182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the significant increase in the number of motor vehicles, road-related issues, such as traffic congestion and accidents, have also escalated. The development of an accurate and efficient traffic flow forecasting model is essential for helping car owners plan their journeys. Despite advancements in forecasting models, there are three remaining issues: 1) failing to effectively use cyclical data; 2) failing to adequately capture spatial dependencies; and 3) high-time complexity and memory usage. To tackle the aforementioned challenges, we present a novel spatial-temporal graph attention gated recurrent transformer network (STGAGRTN) for traffic flow forecasting. Specifically, the use of a spatial transformer module allows for the extraction of dynamic spatial dependencies among individual nodes, going beyond the limitation of only considering neighboring nodes. Subsequently, we propose a temporal transformer to extract periodic information from traffic data and capture long-term dependencies. Additionally, we utilize two additional classical techniques to complement the aforementioned modules for extracting characteristics. By incorporating comprehensive spatial-temporal characteristics into our model, we can accurately predict multiple nodes simultaneously. Finally, we have successfully optimized the computational complexity of the transformer module from O (n(2)) to O(n log n). Our model has undergone extensive testing on four authentic data sets, providing compelling evidence of its superior predictive capabilities.
引用
收藏
页码:14267 / 14281
页数:15
相关论文
共 50 条
  • [41] An efficient spatial-temporal transformer with temporal aggregation and spatial memory for traffic forecasting
    Liu, Aoyu
    Zhang, Yaying
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [42] Adaptive Spatial-Temporal Fusion Graph Convolutional Networks for Traffic Flow Forecasting
    Li, Senwen
    Ge, Liang
    Lin, Yongquan
    Zeng, Bo
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [43] URBAN TRAFFIC FLOW FORECASTING BASED ON SPATIAL-TEMPORAL GRAPH CONTRASTIVE LEARNING
    Pan, Lin
    Ren, Qianqian
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 5560 - 5564
  • [44] A General Traffic Flow Prediction Approach Based on Spatial-Temporal Graph Attention
    Tang, Cong
    Sun, Jingru
    Sun, Yichuang
    Peng, Mu
    Gan, Nianfei
    IEEE ACCESS, 2020, 8 : 153731 - 153741
  • [45] A Spatial-Temporal Graph Convolutional Recurrent Network for Transportation Flow Estimation
    Drosouli, Ifigenia
    Voulodimos, Athanasios
    Mastorocostas, Paris
    Miaoulis, Georgios
    Ghazanfarpour, Djamchid
    SENSORS, 2023, 23 (17)
  • [46] Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
    Huo, Guangyu
    Zhang, Yong
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3855 - 3867
  • [47] Spatial-Temporal Transformer Networks for Traffic Flow Forecasting Using a Pre-Trained Language Model
    Ma, Ju
    Zhao, Juan
    Hou, Yao
    SENSORS, 2024, 24 (17)
  • [48] A Hybrid Transformer-based Spatial-Temporal Network for Traffic Flow Prediction
    Tian, Guanqun
    Li, Dequan
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [49] JointGraph: joint pre-training framework for traffic forecasting with spatial-temporal gating diffusion graph attention network
    Xiangyuan Kong
    Xiang Wei
    Jian Zhang
    Weiwei Xing
    Wei Lu
    Applied Intelligence, 2023, 53 : 13723 - 13740
  • [50] Multi-component Spatial-temporal Graph Convolution Networks for Traffic Flow Forecasting
    Feng N.
    Guo S.-N.
    Song C.
    Zhu Q.-C.
    Wan H.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (03): : 759 - 769