Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting

被引:3
|
作者
Wu, Di [1 ,2 ]
Peng, Kai [1 ,2 ]
Wang, Shangguang [3 ]
Leung, Victor C. M. [4 ,5 ]
机构
[1] Huaqiao Univ, Coll Engn, Quanzhou 362021, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[4] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[5] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 08期
基金
美国国家科学基金会;
关键词
Graph attention networks (GATs); spatial-temporal dependencies; traffic flow forecasting; transformer; NEURAL-NETWORKS;
D O I
10.1109/JIOT.2023.3340182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the significant increase in the number of motor vehicles, road-related issues, such as traffic congestion and accidents, have also escalated. The development of an accurate and efficient traffic flow forecasting model is essential for helping car owners plan their journeys. Despite advancements in forecasting models, there are three remaining issues: 1) failing to effectively use cyclical data; 2) failing to adequately capture spatial dependencies; and 3) high-time complexity and memory usage. To tackle the aforementioned challenges, we present a novel spatial-temporal graph attention gated recurrent transformer network (STGAGRTN) for traffic flow forecasting. Specifically, the use of a spatial transformer module allows for the extraction of dynamic spatial dependencies among individual nodes, going beyond the limitation of only considering neighboring nodes. Subsequently, we propose a temporal transformer to extract periodic information from traffic data and capture long-term dependencies. Additionally, we utilize two additional classical techniques to complement the aforementioned modules for extracting characteristics. By incorporating comprehensive spatial-temporal characteristics into our model, we can accurately predict multiple nodes simultaneously. Finally, we have successfully optimized the computational complexity of the transformer module from O (n(2)) to O(n log n). Our model has undergone extensive testing on four authentic data sets, providing compelling evidence of its superior predictive capabilities.
引用
收藏
页码:14267 / 14281
页数:15
相关论文
共 50 条
  • [41] TrafficSCINet: An Adaptive Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting
    Gong, Kai
    Han, Shiyuan
    Yang, Xiaohui
    Yu, Weiwei
    Guan, Yuanlin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 628 - 639
  • [42] Hierarchical Spatial-Temporal Neural Network with Attention Mechanism for Traffic Flow Forecasting
    Lian, Qingyun
    Sun, Wei
    Dong, Wei
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [43] Attention Based Spatial-Temporal Dynamic Interact Network for Traffic Flow Forecasting
    Xie, Junwei
    Ge, Liang
    Li, Haifeng
    Lin, Yiping
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 445 - 457
  • [44] Dynamic multi-granularity spatial-temporal graph attention network for traffic forecasting
    Sang, Wei
    Zhang, Huiliang
    Kang, Xianchang
    Nie, Ping
    Meng, Xin
    Boulet, Benoit
    Sun, Pei
    INFORMATION SCIENCES, 2024, 662
  • [45] Generalized spatial-temporal regression graph convolutional transformer for traffic forecasting
    Xiong, Lang
    Su, Liyun
    Zeng, Shiyi
    Li, Xiangjing
    Wang, Tong
    Zhao, Feng
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 7943 - 7964
  • [46] Attention-based spatial-temporal adaptive dual-graph convolutional network for traffic flow forecasting
    Xia, Dawen
    Shen, Bingqi
    Geng, Jian
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23): : 17217 - 17231
  • [47] Hybrid spatial-temporal graph neural network for traffic forecasting
    Wang, Peng
    Feng, Longxi
    Zhu, Yijie
    Wu, Haopeng
    INFORMATION FUSION, 2025, 118
  • [48] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 364 - 373
  • [49] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021, : 364 - 373
  • [50] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176