FLIP: Cross-domain Face Anti-spoofing with Language Guidance

被引:14
|
作者
Srivatsan, Koushik [1 ]
Naseer, Muzammal [1 ]
Nandakumar, Karthik [1 ]
机构
[1] Mohamed Bin Zayed Univ Artificial Intelligence MB, Abu Dhabi, U Arab Emirates
关键词
D O I
10.1109/ICCV51070.2023.01803
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face anti-spoofing (FAS) or presentation attack detection is an essential component of face recognition systems deployed in security-critical applications. Existing FAS methods have poor generalizability to unseen spoof types, camera sensors, and environmental conditions. Recently, vision transformer (ViT) models have been shown to be effective for the FAS task due to their ability to capture long-range dependencies among image patches. However, adaptive modules or auxiliary loss functions are often required to adapt pre-trained ViT weights learned on large-scale datasets such as ImageNet. In this work, we first show that initializing ViTs with multimodal (e.g., CLIP) pre-trained weights improves generalizability for the FAS task, which is in line with the zero-shot transfer capabilities of vision-language pre-trained (VLP) models. We then propose a novel approach for robust cross-domain FAS by grounding visual representations with the help of natural language. Specifically, we show that aligning the image representation with an ensemble of class descriptions (based on natural language semantics) improves FAS generalizability in low-data regimes. Finally, we propose a multimodal contrastive learning strategy to boost feature generalization further and bridge the gap between source and target domains. Extensive experiments on three standard protocols demonstrate that our method significantly outperforms the state-of-the-art methods, achieving better zero-shot transfer performance than five-shot transfer of "adaptive ViTs". Code: https://github.com/koushiksrivats/FLIP
引用
收藏
页码:19628 / 19639
页数:12
相关论文
共 50 条
  • [21] Quality-Invariant Domain Generalization for Face Anti-Spoofing
    Liu, Yongluo
    Li, Zun
    Xu, Yaowen
    Guo, Zhizhi
    Zou, Zhaofan
    Wu, Lifang
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (11) : 5239 - 5254
  • [22] Multi-Domain Feature Alignment for Face Anti-Spoofing
    Zhang, Shizhe
    Nie, Wenhui
    SENSORS, 2023, 23 (08)
  • [23] Energy-Based Domain Generalization for Face Anti-Spoofing
    Du, Zhekai
    Li, Jingjing
    Zuo, Lin
    Zhu, Lei
    Lu, Ke
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1749 - 1757
  • [24] DOMAIN-GENERALIZED FACE ANTI-SPOOFING WITH UNKNOWN ATTACKS
    Hong, Zong-Wei
    Lin, Yu-Chen
    Liu, Hsuan-Tung
    Yeh, Yi-Ren
    Chen, Chu-Song
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 820 - 824
  • [25] Generalizable Representation Learning for Mixture Domain Face Anti-Spoofing
    Chen, Zhihong
    Yao, Taiping
    Sheng, Kekai
    Ding, Shouhong
    Tai, Ying
    Li, Jilin
    Huang, Feiyue
    Jin, Xinyu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1132 - 1139
  • [26] Instance-Aware Domain Generalization for Face Anti-Spoofing
    Zhou, Qianyu
    Zhang, Ke-Yue
    Yao, Taiping
    Lu, Xuequan
    Yi, Ran
    Ding, Shouhong
    Ma, Lizhuang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 20453 - 20463
  • [27] Towards Data-Centric Face Anti-spoofing: Improving Cross-Domain Generalization via Physics-Based Data Synthesis
    Cai, Rizhao
    Soh, Cecelia
    Yu, Zitong
    Li, Haoliang
    Yang, Wenhan
    Kot, Alex C.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, : 1689 - 1710
  • [28] Domain-Generalized Face Anti-Spoofing with Domain Adaptive Style Extraction
    Yang, Sunghun
    Lee, Jungho
    Jang, Sungjun
    Kang, Minseok
    Lee, Yongju
    Lee, Sangyoun
    2024 INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS, AND COMMUNICATIONS, ITC-CSCC 2024, 2024,
  • [29] Cross Modal Focal Loss for RGBD Face Anti-Spoofing
    George, Anjith
    Marcel, Sebastien
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7878 - 7887
  • [30] A Domain Generalized Face Anti-Spoofing System Using Domain Adversarial Learning
    Chen, Ching-Yi
    Jhong, Sin-Ye
    Hsia, Chih-Hsien
    INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY INNOVATION, 2024, 14 (04) : 378 - 388