Machine Learning for Materials Science Workshop (MLMS)

被引:0
|
作者
Sardeshmukh, Avadhut [1 ]
Reddy, Sreedhar [1 ]
Gautham, B. P. [1 ]
Agrawal, Ankit [2 ]
机构
[1] Tata Consultancy Serv, TCS Res, Pune, Maharashtra, India
[2] Northwestern Univ, Evanston, IL USA
来源
PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022 | 2022年
关键词
materials science; machine learning; microstructure informatics; materials informatics;
D O I
10.1145/3534678.3542902
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial intelligence and machine learning are being increasingly used in scientific domains such as computational fluid dynamics and chemistry. Particularly notable is a recently renewed interest in solving partial differential equations using machine learning models, especially deep neural networks, as partial differential equations arise in many scientific problems of interest. Within materials science literature, there has been a surge in publications on AI-enabled materials discovery, in the last five years. Despite this, the interaction between machine learning researchers and materials scientists (especially, scientists working on structural materials, their microstructures, textures and so on) has been very sparse. On the other hand, AI/ML techniques can clearly be integrated into materials design frameworks (e.g., MGI efforts) to support accelerated materials development, novel simulation methodologies and advanced data analytics. Hence there is an immediate need for exchange of ideas and collaborations between machine learning and materials science communities. We believe a workshop dedicated to this theme would be well-suited to foster such collaborations. The aim of this workshop is to bring together the computer science and materials science communities and foster deeper collaborations between the two to accelerate the adoption of AI/ML in materials science. We hope and envision thisworkshop to facilitate in building a community of researchers in this interdisciplinary area in the years ahead.
引用
收藏
页码:4902 / 4903
页数:2
相关论文
共 50 条
  • [1] Opportunities and Challenges for Machine Learning in Materials Science
    Morgan, Dane
    Jacobs, Ryan
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 50, 2020, 2020, 50 : 71 - 103
  • [2] Replicating Machine Learning Experiments in Materials Science
    Pouchard, Line
    Lin, Yuewei
    Van Dam, Hubertus
    PARALLEL COMPUTING: TECHNOLOGY TRENDS, 2020, 36 : 743 - 755
  • [3] Innovative Materials Science via Machine Learning
    Gao, Chaochao
    Min, Xin
    Fang, Minghao
    Tao, Tianyi
    Zheng, Xiaohong
    Liu, Yangai
    Wu, Xiaowen
    Huang, Zhaohui
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (01)
  • [4] Machine learning in materials science
    Wei, Jing
    Chu, Xuan
    Sun, Xiang-Yu
    Xu, Kun
    Deng, Hui-Xiong
    Chen, Jigen
    Wei, Zhongming
    Lei, Ming
    INFOMAT, 2019, 1 (03) : 338 - 358
  • [5] Theory-guided Machine learning in Materials science
    Wagner, Nicholas
    Rondinelli, James M.
    FRONTIERS IN MATERIALS, 2016, 3
  • [6] Data quantity governance for machine learning in materials science
    Liu, Yue
    Yang, Zhengwei
    Zou, Xinxin
    Ma, Shuchang
    Liu, Dahui
    Avdeev, Maxim
    Shi, Siqi
    NATIONAL SCIENCE REVIEW, 2023, 10 (07)
  • [7] DScribe: Library of descriptors for machine learning in materials science
    Himanen, Lauri
    Jager, Marc O. J.
    Morooka, Eiaki, V
    Canova, Filippo Federici
    Ranawat, Yashasvi S.
    Gao, David Z.
    Rinke, Patrick
    Foster, Adam S.
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 247
  • [8] Advances of machine learning in materials science: Ideas and techniques
    Chong, Sue Sin
    Ng, Yi Sheng
    Wang, Hui-Qiong
    Zheng, Jin-Cheng
    FRONTIERS OF PHYSICS, 2024, 19 (01)
  • [10] Advancement of machine learning in materials science
    Rajendra, P.
    Girisha, A.
    Naidu, T. Gunavardhana
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 5503 - 5507