Thermo-economics, emissions, and sustainability comparison of a novel hybrid evaporative cooled solid oxide fuel cell-recuperated gas turbine with conventional system

被引:6
|
作者
Sinha, Abhinav Anand [1 ]
Choudhary, Tushar [1 ]
Shukla, Anoop Kumar [2 ]
Ahmadi, P. [3 ]
机构
[1] PDPM Indian Inst Informat & Technol Design & Mfg, Dept Mech Engn, Sustainable Energy Technol Lab, Jabalpur, Madhya Pradesh, India
[2] Amity Univ Uttar Pradesh, Dept Mech Engn, Noida, India
[3] Istinye Univ, Fac Engn, Dept Mech Engn, Istanbul, Turkiye
基金
新加坡国家研究基金会;
关键词
Evaporative cooling; Energy; Exergy analysis; SOFC; Sustainability Indicator; INLET AIR; PERFORMANCE IMPROVEMENT; POWER-PLANTS; CYCLE; OPTIMIZATION; ENERGY;
D O I
10.1016/j.psep.2024.03.040
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel integration of a solid-oxide fuel cell to an evaporative intercooled recuperated gas turbine (SOFC-EIcRGT) is presented. The goal of this integrated system is to reduce power consumption associated with the work of compression and hence augment power plant performance. The proposed system is compared with a conventional evaporative intercooled recuperated gas turbine (EIc-RGT). Both energetic and exergetic performance of the systems were carried out. A range of sustainability indexes were evaluated for each component of both configurations. The sustainability index helps to identify the impact on the environment. A novel entropy generation number, a dimensionless number, was proposed to identify "the ratio of component's irreversibility to the heat supplied." The maximum energy and exergy efficiencies for SOFC-EIc-RGT were nearly double that of the EIc-RGT. A novel performance map and emission map were plotted for power plant design engineers and researchers to analyse CO and NOx emissions with various operating parameters for EIc-RGT and SOFC-EIc-RGT. This economic analysis makes the system more reliable, which includes environmental and fuel cost rates.
引用
收藏
页码:1189 / 1204
页数:16
相关论文
共 50 条
  • [41] System Study on Hydrothermal Gasification Combined With a Hybrid Solid Oxide Fuel Cell Gas Turbine
    Toonssen, R.
    Aravind, P. V.
    Smit, G.
    Woudstra, N.
    Verkooijen, A. H. M.
    FUEL CELLS, 2010, 10 (04) : 643 - 653
  • [42] Techno-energy-economic sensitivity analysis of hybrid system Solid Oxide Fuel Cell/Gas Turbine
    Corigliano, O.
    De Lorenzo, G.
    Fragiacomo, P.
    AIMS ENERGY, 2021, 9 (05) : 934 - 990
  • [43] Study on a novel solid oxide fuel cell/gas turbine hybrid cycle system with CO2 capture
    Duan, Liqiang
    Yang, Yongping
    He, Binbin
    Xu, Gang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2012, 36 (02) : 139 - 152
  • [44] Fuel cell system modeling for solid oxide fuel cell/gas turbine hybrid power plants, Part I: Modeling and simulation framework
    Leucht, Florian
    Bessler, Wolfgang G.
    Kallo, Josef
    Friedrich, K. Andreas
    Mueller-Steinhagen, H.
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1205 - 1215
  • [45] Multi-objective optimization of a pressurized solid oxide fuel cell - gas turbine hybrid system integrated with seawater reverse osmosis
    Eveloy, Valerie
    Rodgers, Peter
    Al Alili, Ali
    ENERGY, 2017, 123 : 594 - 614
  • [46] Thermo-economic analysis of a polygeneration system using biogas and waste tire based on the integration of solid oxide fuel cell, gas turbine, pyrolysis, and organic rankine cycle
    Liu, Jun
    Sun, Hao
    Chen, Heng
    Li, Wenchao
    Pan, Peiyuan
    Wu, Lining
    Xu, Gang
    Liu, Wenyi
    APPLIED THERMAL ENGINEERING, 2023, 230
  • [47] Coupling effects of fuel reforming process and fuel utilization on the system performance of a natural gas solid oxide fuel cell/gas turbine hybrid system
    Chen, Hao
    Yang, Chen
    Zhang, Biao
    Zhou, Nana
    Harun, Nor Farida
    Oryshchyn, Danylo
    Tucker, David
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (12) : 17664 - 17690
  • [48] Exergy based performance analysis of a solid oxide fuel cell and steam injected gas turbine hybrid power system
    Motahar, Sadegh
    Alemrajabi, Ali Akbar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (05) : 2396 - 2407
  • [49] Waste heat recovery and exergy-based comparison of a conventional and a novel fuel cell integrated gas turbine hybrid configuration
    Sinha, Abhinav Anand
    Choudhary, Tushar
    Ansari, Mohd. Zahid
    Shukla, Anoop Kumar
    Arabkoohsar, Ahmad
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 57
  • [50] THERMODYNAMIC ANALYSIS OF SOLID OXIDE FUEL CELL AND GAS TURBINE HYBRID SYSTEM FUELED WITH GASIFIED BIOMASS
    Lv, Xiaojing
    Geng, Xiaoru
    Weng, Yiwu
    PROCEEDINGS OF THE ASME POWER CONFERENCE, 2014, VOL 2, 2014,