The Non-degenerate Condition for Prescribed Q Curvature Problem on Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^n$$\end{document}

被引:0
作者
Shihong Zhang [1 ]
机构
[1] Nanjing University,Department of Mathematics
关键词
Q curvature; existence; finite dimensional reduction; Primary 35A01; 35B33; Secondary 35G20; 58J05;
D O I
10.1007/s00025-024-02216-1
中图分类号
学科分类号
摘要
For n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, we consider the equation 0.1PSnu+2QgSn=2QgenuonSn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P_{\mathbb {S}^n}u+2Q_{g_{\mathbb {S}^n}}=2Q_ge^{nu}\qquad \textrm{on}\qquad \mathbb {S}^n. \end{aligned}$$\end{document}In general, we always assume the non-degenerate condition for Eq. (0.1), i.e., 0.2|∇gSnQg|2+ΔgSnQg2≠0onSn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |\nabla _{g_{\mathbb {S}^n}} Q_g|^2+\left( \Delta _{g_{\mathbb {S}^n}} Q_g\right) ^2\ne 0\quad \textrm{on}\quad \mathbb {S}^n. \end{aligned}$$\end{document}However, in this paper, we provide some nontrivial examples that do not satisfy condition (0.2); nevertheless, Eq. (0.1) still has at least one solution.
引用
收藏
相关论文
共 18 条
[1]  
Chang S-YA(1987)prescribed Gaussian curvature on Acta Math. 159 215-259
[2]  
Yang PC(1988)Conformal deformation of metrics on J. Differ. Geom. 27 259-296
[3]  
Chang S-YA(1995)Extremal metrics of zeta function determinants on 4-manifolds Ann. Math. (2) 142 171-212
[4]  
Yang PC(1990)prescribed Gaussian curvature on Duke Math. J. 61 679-703
[5]  
Chang S-YA(2010)On the local solvability of the Nirenberg problem on Discrete Contin. Dyn. Syst. 28 607-615
[6]  
Yang PC(2016)prescribed the Q-curvature on the sphere with conical singularities Discrete Contin. Dyn. Syst. 36 6307-6330
[7]  
Han Z(2023)prescribed the Nonlinear Differ. Equ. Appl. 30 30-840
[8]  
Han Z(2023)-curvature on pseudo-Einstein CR 3-manifolds Calc. Var. Partial Differ. Equ. 62 43-2023
[9]  
Li YY(1993)Compactness and existence results of the prescribed fractional Q-curvature problem on Trans. Am. Math. Soc. 336 831-undefined
[10]  
Maalaoui A(2009)Remarks on prescribed Gauss curvature J. Funct. Anal. 257 1995-undefined