Waterborne Polyurethane-Urea-Based Composite Inks for 3D Printing with Enhanced Properties

被引:1
|
作者
Larraza, Izaskun [1 ,2 ]
Gonzalez, Kizkitza [3 ]
Ugarte, Lorena [4 ]
Gabilondo, Nagore [1 ,2 ]
Arbelaiz, Aitor [1 ,2 ]
Eceiza, Arantxa [1 ,2 ]
机构
[1] Univ Basque Country UPV EHU, Fac Engn, Mat Technol Res Grp GMT, , Gipuzkoa, Donostia San Sebastian 20018, Gipuzkoa, Spain
[2] Univ Basque Country UPV EHU, Fac Engn, Dept Chem & Environm Engn, Donostia San Sebastian 20018, Gipuzkoa, Spain
[3] Univ Basque Country UPV EHU, Fac Engn, Dept Engn Design, Project Management, ,Gipuzkoa, San Sebastian 20018, Spain
[4] Univ Basque Country UPV EHU, Fac Engn, Dept Engn Design, Project Management, , Gipuzkoa, Eibar 20600, Spain
关键词
waterborne polyurethane-urea; 3D printing; graphene; biobased scaffolds; conductive porousmaterials; DIFFERENT INCORPORATION ROUTES; KAPPA-CARRAGEENAN; MECHANICAL-PROPERTIES; NANOCOMPOSITES; SIZE; DISPERSIONS; STABILITY; HYDROGELS; RHEOLOGY;
D O I
10.1021/acsapm.4c00108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Composite inks valid for direct ink writing (DIW) three-dimensional (3D) printing have been prepared using a waterborne polyurethane-urea (WBPUU) as a matrix, kappa-carrageenan as a rheological modulator, and graphene as a nanoreinforcement. The rheological characterization of the inks showed strong dependence on their formulation, with inks prepared with 2 wt % carrageenan presenting the most suitable properties for DIW, which was clearly evidenced by the high shape fidelity shown by the 3D printed parts obtained from these inks. Properties of the printed parts were related not only to their formulation but also to the additives' incorporation route. In this regard, inks prepared by in situ addition showed highly reinforced properties, signaling the favored formation of WBPUU/additive interactions by this method. For supplying electrical conductivity, the presence of graphene in the material was not sufficient since it seemed to remain embedded in the WBPUU matrix, and thus, the application of a graphene coating was necessary.
引用
收藏
页码:4587 / 4598
页数:12
相关论文
共 50 条
  • [31] In Situ 3D Printing: Opportunities with Silk Inks
    Agostinacchio, Francesca
    Mu, Xuan
    Dire, Sandra
    Motta, Antonella
    Kaplan, David L.
    TRENDS IN BIOTECHNOLOGY, 2021, 39 (07) : 719 - 730
  • [32] Interpolation of tensile properties of polymer composite based on Polyjet 3D printing
    Mohammad Mayyas
    Progress in Additive Manufacturing, 2021, 6 : 607 - 615
  • [33] Interpolation of tensile properties of polymer composite based on Polyjet 3D printing
    Mayyas, Mohammad
    PROGRESS IN ADDITIVE MANUFACTURING, 2021, 6 (04) : 607 - 615
  • [34] Hybrid inks for 3D printing of tall BaTiO3-based ceramics
    Gadea, Christophe
    Spelta, Tarek
    Simonsen, Soren Bredmose
    Esposito, Vincenzo
    Bowen, Jacob R.
    Haugen, Astri Bjornetun
    OPEN CERAMICS, 2021, 6
  • [35] Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review
    Feng, Chunyan
    Zhang, Min
    Bhandari, Bhesh
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2019, 59 (19) : 3074 - 3081
  • [36] Cellulose and Graphene Based Polyurethane Nanocomposites for FDM 3D Printing: Filament Properties and Printability
    Larraza, Izaskun
    Vadillo, Julen
    Calvo-Correas, Tamara
    Tejado, Alvaro
    Olza, Sheila
    Pena-Rodriguez, Cristina
    Arbelaiz, Aitor
    Eceiza, Arantxa
    POLYMERS, 2021, 13 (05)
  • [37] Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing
    Kim, Hyun Woo
    Lee, Jang Ho
    Park, Sae Mi
    Lee, Min Hyeock
    Lee, Il Woo
    Doh, Han Sol
    Park, Hyun Jin
    JOURNAL OF FOOD SCIENCE, 2018, 83 (12) : 2923 - 2932
  • [38] Rheological and physicochemical properties of Spirulina platensis residues-based inks for extrusion 3D food printing
    Wang, Mengwei
    Lu, Xiangning
    Zheng, Xing
    Li, Wei
    Wang, Lijuan
    Qian, Yuemiao
    Zeng, Mingyong
    FOOD RESEARCH INTERNATIONAL, 2023, 169
  • [39] Role of in situ added cellulose nanocrystals as rheological modulator of novel waterborne polyurethane urea for 3D-printing technology
    Vadillo, Julen
    Larraza, Izaskun
    Calvo-Correas, Tamara
    Gabilondo, Nagore
    Derail, Christophe
    Eceiza, Arantxa
    CELLULOSE, 2021, 28 (08) : 4729 - 4744
  • [40] Preparation and properties of 3D printed carbon black/waterborne polyurethane conductive composites
    Zheng, Ling
    Deng, Xin
    Jiao, Xiaolan
    Zhao, Xiuping
    Jingxi Huagong/Fine Chemicals, 2023, 40 (03): : 565 - 571