Large language models (LLMs): survey, technical frameworks, and future challenges

被引:11
|
作者
Kumar, Pranjal [1 ]
机构
[1] Lovely Profess Univ, Sch Comp Sci & Engn, Dept Intelligent Syst, Phagwara 144411, Punjab, India
关键词
Generative language models; Artificial intelligence; Natural language processing; Machine learning; Neural networks; Large language models; ARTIFICIAL-INTELLIGENCE; KNOWLEDGE;
D O I
10.1007/s10462-024-10888-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial intelligence (AI) has significantly impacted various fields. Large language models (LLMs) like GPT-4, BARD, PaLM, Megatron-Turing NLG, Jurassic-1 Jumbo etc., have contributed to our understanding and application of AI in these domains, along with natural language processing (NLP) techniques. This work provides a comprehensive overview of LLMs in the context of language modeling, word embeddings, and deep learning. It examines the application of LLMs in diverse fields including text generation, vision-language models, personalized learning, biomedicine, and code generation. The paper offers a detailed introduction and background on LLMs, facilitating a clear understanding of their fundamental ideas and concepts. Key language modeling architectures are also discussed, alongside a survey of recent works employing LLM methods for various downstream tasks across different domains. Additionally, it assesses the limitations of current approaches and highlights the need for new methodologies and potential directions for significant advancements in this field.
引用
收藏
页数:51
相关论文
共 50 条
  • [1] Adversarial attacks and defenses for large language models (LLMs): methods, frameworks & challenges
    Kumar, Pranjal
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (03)
  • [2] A Survey on the Use of Large Language Models (LLMs) in Fake News
    Papageorgiou, Eleftheria
    Chronis, Christos
    Varlamis, Iraklis
    Himeur, Yassine
    FUTURE INTERNET, 2024, 16 (08)
  • [3] A survey on augmenting knowledge graphs (KGs) with large language models (LLMs): models, evaluation metrics, benchmarks, and challenges
    Ibrahim, Nourhan
    Aboulela, Samar
    Ibrahim, Ahmed
    Kashef, Rasha
    Discover Artificial Intelligence, 2024, 4 (01):
  • [4] A Review of Current Trends, Techniques, and Challenges in Large Language Models (LLMs)
    Patil, Rajvardhan
    Gudivada, Venkat
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [5] Challenges and future directions for integration of large language models into socio-technical systems
    Torkamaan, Helma
    Steinert, Steffen
    Pera, Maria Soledad
    Kudina, Olya
    Freire, Samuel Kernan
    Verma, Himanshu
    Kelly, Sage
    Sekwenz, Marie-Therese
    Yang, Jie
    van Nunen, Karolien
    Warnier, Martijn
    Brazier, Frances
    Oviedo-Trespalacios, Oscar
    BEHAVIOUR & INFORMATION TECHNOLOGY, 2024,
  • [6] Lower Energy Large Language Models (LLMs)
    Lin, Hsiao-Ying
    Voas, Jeffrey
    COMPUTER, 2023, 56 (10) : 14 - 16
  • [7] Towards Safer Large Language Models (LLMs)
    Lawrence, Carolin
    Bifulco, Roberto
    Gashteovski, Kiril
    Hung, Chia-Chien
    Ben Rim, Wiem
    Shaker, Ammar
    Oyamada, Masafumi
    Sadamasa, Kunihiko
    Enomoto, Masafumi
    Takeoka, Kunihiro
    NEC Technical Journal, 2024, 17 (02): : 64 - 74
  • [8] LARGE LANGUAGE MODELS (LLMS) AND CHATGPT FOR BIOMEDICINE
    Arighi, Cecilia
    Brenner, Steven
    Lu, Zhiyong
    BIOCOMPUTING 2024, PSB 2024, 2024, : 641 - 644
  • [9] Large language models (LLMs) and the institutionalization of misinformation
    Garry, Maryanne
    Chan, Way Ming
    Foster, Jeffrey
    Henkel, Linda A.
    TRENDS IN COGNITIVE SCIENCES, 2024, 28 (12) : 1078 - 1088
  • [10] Potentials and Challenges of Large Language Models (LLMs) in the Context of Administrative Decision-Making
    Pesch, Paulina Jo
    EUROPEAN JOURNAL OF RISK REGULATION, 2025,