The IFT80/Hedgehog Pathway Regulates the Osteogenic-adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

被引:1
|
作者
Jiang, Mingyang [1 ]
Zhang, Ke [1 ]
Hu, Yang [1 ]
Lu, Shenyi [2 ]
Wei, Guiqing [1 ]
Liu, Kaicheng [1 ]
Chen, Chuanliang [1 ]
Zou, Xiaochong [1 ]
Dai, Yongheng [1 ]
Gui, Ying [3 ]
Wu, Jing [3 ]
Bo, Huan [4 ]
Bo, Zhandong [1 ]
机构
[1] Guangxi Med Univ, Affiliated Hosp 1, Dept Bone & Joint Surg, Nanning, Peoples R China
[2] Youjiang Med Univ Nationalities, Affiliated Hosp, Dept Rehabil, Baise, Peoples R China
[3] Guangxi Med Univ, Affiliated Hosp 1, Clin Lab Ctr, Nanning, Peoples R China
[4] Nanning 2 High Sch, Int Div, Nanning, Peoples R China
关键词
Steroid-induced avascular necrosis of the femoral head; IFT80; hedgehog pathway; bone marrow mesenchymal stem cells; osteogenic-adipogenic differentiation; FEMORAL-HEAD; STROMAL CELLS; OSTEONECROSIS; HEDGEHOG; CILIA; IFT80;
D O I
10.2174/0109298673300113240418050128
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background Steroid-induced avascular necrosis of the femoral head (SANFH) is a typical refractory disease that often progresses irreversibly and has a high disability rate. Numerous studies have confirmed that abnormal osteogenic-adipogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) is one of the major factors of SANFH. However, the mechanism remains to be elucidated.Objectives This study aimed to investigate the mechanism and effect of the IFT80/Hedgehog-mediated osteogenic-adipogenic differentiation of BM-MSCs in SANFH.Methods Femoral head specimens of SANFH patients and femoral neck fractures (FNF) patients were collected to detect the expression of IFT80, Shh and osteogenic-adipogenic differentiation-related genes by immunohistochemistry (IHC), western blot (WB) and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR). Based on the rabbit SANFH model, the mRNA expression and protein level of IFT80 and Shh were detected by RT-qPCR and WB. After the osteogenic/adipogenic differentiation based on rabbit BM-MSCs, the IFT80, Gli1, PPAR-gamma, and Runx2 expression were detected. Differences in alkaline phosphodiesterase activity, calcium nodule, quantification/distribution of lipid droplets, expression of IFT80/Hedgehog axis, and the level of osteogenic-adipogenic associated factors were determined after IFT80 overexpression.Results RT-qPCR, WB and IHC revealed that IFT80 and Shh lowly expressed in the osteoblasts and intra-trabecular osteocytes at the edge of trabeculae and in the intercellular matrix of the bone marrow lumen in the SANFH specimens; The Runx2 expression was low, while the PPAR-gamma expression was high in both human specimens and animal models of SANFH, suggesting that the balance of osteogenic-adipogenic differentiation was dysregulated. Rabbit BM-MSCs with stable overexpression of IFT80 showed increased alkaline phosphatase activity after induction of osteogenic differentiation, increased calcium nodule production, and decreased adipogenesis after induction of adipogenic differentiation.Conclusion There is a dysregulation of the balance of osteogenic-adipogenic differentiation in SANFH. IFT80 may inhibit adipogenic differentiation while promoting osteogenic differentiation in rabbit BM-MSCs by activating the Hedgehog pathway.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] MicroRNA Regulation in Osteogenic and Adipogenic Differentiation of Bone Mesenchymal Stem Cells and its Application in Bone Regeneration
    Li, Binbin
    CURRENT STEM CELL RESEARCH & THERAPY, 2018, 13 (01) : 26 - 30
  • [22] Regulation of osteogenic differentiation of bone marrow mesenchymal stem cells by intermittent hypoxia
    Wei, Silong
    Guo, Xiaojing
    Lu, Xiaofeng
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 11 (11): : 11995 - 12001
  • [23] Roles of circular RNAs in osteogenic differentiation of bone marrow mesenchymal stem cells
    Wang, Jicheng
    Wang, Tengyun
    Zhang, Fujie
    Zhang, Yangyang
    Guo, Yongzhi
    Jiang, Xin
    Yang, Bo
    MOLECULAR MEDICINE REPORTS, 2022, 26 (01)
  • [24] Tilianin Promotes the Proliferation and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
    Xue, Zhixing
    Yang, Jin
    Yu, Panfeng
    CURRENT TOPICS IN NUTRACEUTICAL RESEARCH, 2022, 20 (02) : 259 - 264
  • [25] MicroRNA-133b negatively regulates the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells
    Xiao, Wende
    Wen, Shifeng
    Chen, Haoyi
    Zheng, Weipeng
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2016, 9 (12): : 12609 - 12614
  • [26] Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells
    Tian, Cheng
    Huang, Yanlan
    Li, Qimeng
    Feng, Zhihui
    Xu, Qiong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03)
  • [27] PPARγ and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells
    Yuan, Zongyi
    Li, Qing
    Luo, Shihong
    Liu, Zhi
    Luo, Daowen
    Zhang, Bo
    Zhang, Dongdong
    Rao, Pengcheng
    Xiao, Jingang
    CURRENT STEM CELL RESEARCH & THERAPY, 2016, 11 (03) : 216 - 225
  • [28] IGFBP7 regulates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via Wnt/β-catenin signaling pathway
    Zhang, Wei
    Chen, Erman
    Chen, Mo
    Ye, Chenyi
    Qi, Yiying
    Ding, Qianhai
    Li, Hang
    Xue, Deting
    Gao, Xiang
    Pan, Zhijun
    FASEB JOURNAL, 2018, 32 (04) : 2280 - 2291
  • [29] Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro
    An, Qijun
    Wu, Dou
    Ma, Yuehong
    Zhou, Biao
    Liu, Qiang
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2015, 36 (06) : 1615 - 1622
  • [30] Research progress on the role of lncRNA-miRNA networks in regulating adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells in osteoporosis
    An, Fangyu
    Wang, Xiaxia
    Wang, Chunmei
    Liu, Ying
    Sun, Bai
    Zhang, Jie
    Gao, Peng
    Yan, Chunlu
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14