Atomistic dislocation core energies and calibration of non-singular discrete dislocation dynamics

被引:12
作者
Hu Y. [1 ]
Szajewski B.A. [2 ]
Rodney D. [3 ]
Curtin W.A. [1 ]
机构
[1] Laboratory for Multiscale Mechanics Modeling (LAMMM), National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL), École Polytechnique Fédérale de Lausanne, Lausanne
[2] Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, 21005-5066, MD
[3] Institut Lumière, Matière, UMR 5306, Universitè de Lyon, Villeurbanne
关键词
atomistic simulation; discrete dislocation dynamics; dislocation core energy; dislocation line tension;
D O I
10.1088/1361-651X/ab5489
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The total energy of an atomistic dislocation includes contributions from the inelastic/large-distortion 'core' region. Capturing this inelastic 'core' energy is important, especially for dislocations with a curvature in the 10-100 nm scale. Current implementations of discrete dislocation dynamics (DDD) mesoscale simulations either approximate or neglect the core energy and so do not provide consistency with fully-atomistic studies. Using established interatomic potentials for FCC metals, the total dislocation energy is computed directly in atomistic simulations of straight dislocations and a core energy at any desired cut-off core radius is obtained as a function of dislocation character. A proper introduction of the atomistic core energy into the ParaDiS DDD code that uses a non-singular theory (Cai et al 2006 J. Mech. Phys. Solids 54 561-87) is then presented. The resulting atomistically-informed ParaDiS DDD is used to simulate the periodic bow-out of edge and screw dislocations in near-elastically-isotropic aluminum at various length and stress, with comparisons to fully-atomistic simulations. Generally good agreement is obtained between DDD and atomistics, with the best agreement achieved using a non-singular regularization parameter in the range of a = 5 - 10b. The analysis is then extended to compute the core energy of the Shockley partial dislocations that arise in the dissociation of perfect dislocations in fcc metals. © 2019 IOP Publishing Ltd.
引用
收藏
相关论文
共 42 条
  • [1] Hirth J.P., Lothe J., Theory of Dislocations, (1982)
  • [2] Arsenlis A., Cai W., Tang M., Rhee M., Oppelstrup T., Hommes G., Pierce T.G., Bulatov V.V., Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 15, 6, (2007)
  • [3] Po G., Mohamed M.S., Crosby T., Erel C., El-Azab A., Ghoniem N., Recent progress in discrete dislocation dynamics and its applications to micro plasticity, J. Miner., Metals Mater. Soc., 66, pp. 2108-2120, (2014)
  • [4] Weygand D., Friedman L.H., Giessen E.V.D., Needleman A., Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 10, 4, pp. 437-468, (2002)
  • [5] Devincre B., Condat M., Model validation of a 3d simulation of dislocation dynamics: Discretization and line tension effects, Acta Metall. Mater., 40, pp. 2629-2637, (1992)
  • [6] Fivel M.C., Discrete dislocation dynamics: An important recent break-through in the modelling of dislocation collective behaviour, C.R. Phys., 9, pp. 427-436, (2008)
  • [7] Krebs J., Rao S.I., Verheyden S., Miko C., Goodall R., Curtin W.A., Mortensen A., Cast aluminium single crystals cross the threshold from bulk to size-dependent stochastic plasticity, Nat. Mater., 16, pp. 730-736, (2017)
  • [8] Cai W., Arsenlis A., Weinberger C.R., Bulatov V.V., A non-singular continuum theory of dislocations, J. Mech. Phys. Solids, 54, pp. 561-587, (2006)
  • [9] Lazar M., The fundamentals of non-singular dislocations in the theory of gradient elasticity: Dislocation loops and straight dislocations, Int. J. Solids Struct., 50, pp. 352-362, (2013)
  • [10] Martinez E., Marian J., Arsenlis A., Victoria M., Perlado J.M., Atomistically informed dislocation dynamics in fcc crystals, J. Mech. Phys. Solids, 56, pp. 869-895, (2008)