One-step synthesis of carbon-supported electrocatalysts

被引:0
作者
Tigges S. [1 ]
Wöhrl N. [1 ]
Radev I. [2 ]
Hagemann U. [1 ,3 ]
Heidelmann M. [1 ,3 ]
Nguyen T.B. [1 ,3 ]
Gorelkov S. [2 ]
Schulz S. [4 ]
Lorke A. [1 ]
机构
[1] Faculty of Physics and CENIDE, University of Duisburg-Essen, Carl-Benz-Straße 199, Duisburg
[2] The hydrogen and fuel cell center (ZBT GmbH), Carl-Benz-Straße 201, Duisburg
[3] Interdisciplinary Center for Analytics on the Nanoscale, University of Duisburg-Essen, Lotharstraße 1, Duisburg
[4] Faculty of Chemistry and CENIDE, University of Duisburg-Essen, Universitätstraße. 5-7, Essen
关键词
Electrocatalyst; Fuel cells; Hybrid nanomaterial; Long-term stability; Nanoparticle embedding; One-step synthesis; Plasma-enhanced chemical vapor deposition (PE-CVD);
D O I
10.3762/BJNANO.11.126
中图分类号
学科分类号
摘要
Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell applications as they show significantly improved electrochemical long-term stability compared to the industrial standard HiSPEC 4000. The PE-CVD process is furthermore expected to be extendable to the general deposition of metal-containing carbon materials from other commercially available metal acetylacetonate precursors. © 2020 Tigges et al.; licensee Beilstein-Institut.
引用
收藏
页码:1419 / 1431
页数:12
相关论文
共 46 条
[1]  
Fuel Cell Market: Global Industry Trends, Size, Share, Growth, Opportunities and Forecast 2019-2024
[2]  
, (2019)
[3]  
Alaswad A., Baroutaji A., Achour H., Carton J., Al Makky A., Olabi A.G., Int. J. Hydrogen Energy, 41, pp. 16499-16508, (2016)
[4]  
Rath R., Kumar P., Mohanty S., Nayak S.K., Int. J. EnergyRes, 43, pp. 8931-8955, (2019)
[5]  
Kang S., Kim H., Chung Y.-H., Nano Convergence, 5, (2018)
[6]  
Li Y., Sun Y., Qin Y., Zhang W., Wang L., Luo M., Yang H., Guo S., Adv. EnergyMater, 10, (2020)
[7]  
Esmaeilifar A., Rowshanzamir S., Eikani M.H., Ghazanfari E., Energy, 35, pp. 3941-3957, (2010)
[8]  
Lopez-Sanchez J.A., Dimitratos N., Hammond C., Brett G.L., Kesavan L., White S., Miedziak P., Tiruvalam R., Jenkins R.L., Carley A.F., Knight D., Kiely C.J., Hutchings G.J., Nat. Chem, 3, pp. 551-556, (2011)
[9]  
Liu W., Zhang H., Li C., Wang X., Liu J., Zhang X., J. Energy Chem, 47, pp. 333-345, (2020)
[10]  
Zhou Z., Li X., Li Q., Zhao Y., Pang H., Mater. Today Chem, 11, pp. 169-196, (2019)