Planar Quadratic Differential Systems with Invariants of the Form ax2+bxy+cy2+dx+ey+c1t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a x^2+b x y+c y^2+d x+e y+c_1 t$$\end{document}

被引:0
作者
Jaume Llibre [1 ]
Tayeb Salhi [2 ]
机构
[1] Universitat Autònoma de Barcelona Bellaterra,Departament de Matemàtiques
[2] University Mohamed El Bachir El Ibrahimi,Department of Mathematics
[3] Bordj Bou Arreridj,undefined
关键词
Planar quadratic differential system; Invariant; Hamiltonian first integral; Poincaré compactification; singular point; Chordal quadratic system; 34C05; 34A34;
D O I
10.1007/s41980-024-00888-7
中图分类号
学科分类号
摘要
A function I(x, y, t) constant on the solutions of a differential system in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} is called an invariant. We classify all planar quadratic differential systems having invariants of the form I(x,y,t)=ax2+bxy+cy2+dx+ey+c1t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(x,y,t)=a x^2+b x y+c y^2+d x+e y+c_1 t$$\end{document} with c1≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1\ne 0$$\end{document}. There are 13 different families of quadratic systems having invariants of this form. As far as we know this is the first time that quadratic differential systems having an invariant different from a Darboux invariant have been classified
引用
收藏
相关论文
共 18 条
  • [1] Álvarez MJ(2011)A survey on the blow up technique Int. J. Bifur. Chaos Appl. Sci. Eng. 21 3103-3118
  • [2] Ferragut A(2021)Quadratic planar differential systems with algebraic limit cycles via quadratic plane cremona maps Adv. Math. 389 93-110
  • [3] Jarque J(2001)A new classification of planar homogeneous quadratic systems Qual. Theory Dyn. Syst. 2 393-421
  • [4] Alberich-Carramiñana M(2006)Polynomial first integrals of quadratic vector fields J. Differ. Equ. 230 751-782
  • [5] Ferragut A(1986)Chordal quadratic systems Rock. Mt. J. Math. 16 1127-1136
  • [6] Llibre J(2014)Darboux invariants for planar polynomial differential systems having an invariant conic Zeitschrift fuer Angewandte Mathematik und Physik 65 undefined-undefined
  • [7] Boularas D(undefined)undefined undefined undefined undefined-undefined
  • [8] Chavarriga J(undefined)undefined undefined undefined undefined-undefined
  • [9] García B(undefined)undefined undefined undefined undefined-undefined
  • [10] Llibre J(undefined)undefined undefined undefined undefined-undefined