Numerical Optimization of Thickness and Optical Band Gap of Absorber and Buffer Layers in Earth-Abundant Cu2ZnSnS4 Thin-Film Solar Cells

被引:4
作者
Achour, L. [1 ]
Khemiri, N. [1 ]
Kanzari, M. [1 ,2 ]
机构
[1] Univ Tunis El Manar, Ecole Natl Ingn Tunis, Lab Photovolta & Mat Semicond, Tunis 1002, Tunisia
[2] Univ Tunis, IPEITunis, 2 Rue Jawaher Lel Nehru, Montfleury 1089, Tunisia
关键词
CZTS solar cell; thickness; band gap energy; numerical simulation; SIMULATION; EFFICIENCY; PERFORMANCE;
D O I
10.1007/s11664-024-11110-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, numerical simulations were employed to examine the influence of thickness and band gap energy of the Cu2ZnSnS4 (CZTS) absorber and Zn(O,S) buffer layer on the performance of the earth-abundant and nontoxic Mo/Cu2ZnSnS4/Zn(O,S)/i-ZnO/ZnO:Al structure. Firstly, simulation was performed on the CZTS-based solar cell with experimental values of thickness (610 nm) and band gap energy (1.51 eV) obtained for the absorber layer CZTS. We found an open-circuit voltage V-oc=1.17 V, a short-circuit current density J(sc)=23.26 mA/cm(2), a fill factor FF=57.31%, and a conversion efficiency eta=15.61%. Then we varied the thickness (from 500 nm to 3000 nm) and gap (from 1.40 eV to 1.60 eV) of CZTS thin film and concluded that the optimized thickness and band gap energy were 2400 nm and 1.48 eV, respectively. Finally, we used these values to found the optimal performance of the device. The optimized results were FF=21.24%, J(sc)=28.05 mA /cm(2), V-oc=3.63 V, and eta=21.64%. It is noted that the solar cell performance remained stable by varying the thickness and gap energy of the Zn(O,S) buffer layer.
引用
收藏
页码:4188 / 4196
页数:9
相关论文
共 53 条
[21]   Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS [J].
Khoshsirat, Nima ;
Yunus, Nurul Amziah Md ;
Hamidon, Mohd Nizar ;
Shafie, Suhaidi ;
Amin, Nowshad .
OPTIK, 2015, 126 (7-8) :681-686
[22]   Enhancement of CZTS photovoltaic device performance with silicon at back-contact: A study using SCAPS-1D [J].
Kumari, Neha ;
Ingole, Sarang .
SOLAR ENERGY, 2022, 236 :301-307
[23]   Cadmium Free Cu2ZnSnS4 Solar Cells with 9.7% Efficiency [J].
Larsen, Jes K. ;
Larsson, Fredrik ;
Torndahl, Tobias ;
Saini, Nishant ;
Riekehr, Lars ;
Ren, Yi ;
Biswal, Adyasha ;
Hauschild, Dirk ;
Weinhardt, Lothar ;
Heske, Clemens ;
Platzer-Bjorkman, Charlotte .
ADVANCED ENERGY MATERIALS, 2019, 9 (21)
[24]  
Latrous A.R., 2021, INT J THIN FILM SCI, V10, P59, DOI [10.18576/ijtfst/100109, DOI 10.18576/IJTFST/100109]
[25]   Cu2ZnSnSe4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length [J].
Lee, Yun Seog ;
Gershon, Talia ;
Gunawan, Oki ;
Todorov, Teodor K. ;
Gokmen, Tayfun ;
Virgus, Yudistira ;
Guha, Supratik .
ADVANCED ENERGY MATERIALS, 2015, 5 (07)
[26]   EFFECT OF THE SELENIUM CONTENT IN THE OPTICAL PROPERTIES OF THE KESTERITE Cu2ZnSnS4-XSeX PHASES [J].
Lopez-Vergara, F. ;
Galdamez, A. ;
Barahona, P. ;
Manriquez, V. .
JOURNAL OF THE CHILEAN CHEMICAL SOCIETY, 2016, 61 (04) :3291-3294
[27]  
Mahbub R., 2016, South Asian Journal of Engineering and Technology, V2, P1
[28]   Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: A numerical simulation approach [J].
Meher, S. R. ;
Balakrishnan, L. ;
Alex, Z. C. .
SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 :703-722
[29]   Simulation of High Efficiency CIGS solar cells with SCAPS-1D software [J].
Mostefaoui, M. ;
Mazari, H. ;
Khelifi, S. ;
Bouraiou, A. ;
Dabou, R. .
INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY -TMREES15, 2015, 74 :736-744
[30]   Impact of Li and K co-doping on the optoelectronic properties of CZTS monograin powder [J].
Muska, Katri ;
Timmo, Kristi ;
Pilvet, Maris ;
Kaupmees, Reelika ;
Raadik, Taavi ;
Mikli, Valdek ;
Grossberg-Kuusk, Maarja ;
Krustok, Juri ;
Josepson, Raavo ;
Lange, Sven ;
Kauk-Kuusik, Marit .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 252