Numerical Optimization of Thickness and Optical Band Gap of Absorber and Buffer Layers in Earth-Abundant Cu2ZnSnS4 Thin-Film Solar Cells

被引:4
作者
Achour, L. [1 ]
Khemiri, N. [1 ]
Kanzari, M. [1 ,2 ]
机构
[1] Univ Tunis El Manar, Ecole Natl Ingn Tunis, Lab Photovolta & Mat Semicond, Tunis 1002, Tunisia
[2] Univ Tunis, IPEITunis, 2 Rue Jawaher Lel Nehru, Montfleury 1089, Tunisia
关键词
CZTS solar cell; thickness; band gap energy; numerical simulation; SIMULATION; EFFICIENCY; PERFORMANCE;
D O I
10.1007/s11664-024-11110-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, numerical simulations were employed to examine the influence of thickness and band gap energy of the Cu2ZnSnS4 (CZTS) absorber and Zn(O,S) buffer layer on the performance of the earth-abundant and nontoxic Mo/Cu2ZnSnS4/Zn(O,S)/i-ZnO/ZnO:Al structure. Firstly, simulation was performed on the CZTS-based solar cell with experimental values of thickness (610 nm) and band gap energy (1.51 eV) obtained for the absorber layer CZTS. We found an open-circuit voltage V-oc=1.17 V, a short-circuit current density J(sc)=23.26 mA/cm(2), a fill factor FF=57.31%, and a conversion efficiency eta=15.61%. Then we varied the thickness (from 500 nm to 3000 nm) and gap (from 1.40 eV to 1.60 eV) of CZTS thin film and concluded that the optimized thickness and band gap energy were 2400 nm and 1.48 eV, respectively. Finally, we used these values to found the optimal performance of the device. The optimized results were FF=21.24%, J(sc)=28.05 mA /cm(2), V-oc=3.63 V, and eta=21.64%. It is noted that the solar cell performance remained stable by varying the thickness and gap energy of the Zn(O,S) buffer layer.
引用
收藏
页码:4188 / 4196
页数:9
相关论文
共 53 条
[1]   XPS analysis and structural characterization of CZTS thin films deposited by one-step thermal evaporation [J].
Ahmadi, S. ;
Khemiri, N. ;
Cantarero, A. ;
Kanzari, M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 925
[2]   Performance Enhancement of an MoS2-Based Heterojunction Solar Cell with an In2Te3 Back Surface Field: A Numerical Simulation Approach [J].
Ali, Md Hasan ;
Al Mamun, Md Abdullah ;
Haque, Md Dulal ;
Rahman, Md Ferdous ;
Hossain, M. Khalid ;
Islam, Abu Zafor Md Touhidul .
ACS OMEGA, 2023, 8 (07) :7017-7029
[3]   Investigations on post sulphurised Cu2ZnSnS4 absorber layer thin films prepared using radio frequency magnetron sputtering [J].
Balaji, G. ;
Prabavathy, N. ;
Balasundaraprabhu, R. ;
Prasanna, S. ;
Echeverria, Elena ;
McIlroy, D. N. ;
Sivakumaran, K. ;
Kannan, M. D. ;
Velauthapillai, Dhayalan .
THIN SOLID FILMS, 2020, 695
[4]   A comparative study of different buffer layers for CZTS solar cell using Scaps-1D simulation program [J].
Belarbi, F. ;
Rahal, W. ;
Rached, D. ;
Benghabrit, S. ;
Adnane, M. .
OPTIK, 2020, 216
[5]   Modeling thin-film PV devices [J].
Burgelman, M ;
Verschraegen, J ;
Degrave, S ;
Nollet, P .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3) :143-153
[6]   Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers [J].
Cui, Xin ;
Sun, Kaiwen ;
Huang, Jialiang ;
Yun, Jae S. ;
Lee, Chang-Yeh ;
Yan, Chang ;
Sun, Heng ;
Zhang, Yuanfang ;
Xue, Chaowei ;
Eder, Katja ;
Yang, Limei ;
Cairney, Julie M. ;
Seidel, Jan ;
Ekins-Daukes, N. J. ;
Green, Martin ;
Hoex, Bram ;
Hao, Xiaojing .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) :2751-2764
[7]  
Dharmadasa I., 2018, Advances in thin-film solar cells
[8]   A comprehensive photovoltaic study on tungsten disulfide (WS2) buffer layer based CdTe solar cell [J].
Emon, E. I. ;
Islam, A. M. ;
Sobayel, M. K. ;
Islam, S. ;
Akhtaruzzaman, Md ;
Amin, N. ;
Ahmed, A. ;
Rashid, M. J. .
HELIYON, 2023, 9 (03)
[9]   Numerical analysis of earth-abundant Cu2ZnSn(SxSe1-x)4 solar cells based on Spectroscopic Ellipsometry results by using SCAPS-1D [J].
Et-taya, Lhoussayne ;
Ouslimane, Touria ;
Benami, Abdellah .
SOLAR ENERGY, 2020, 201 :827-835
[10]  
Fadili S, 2017, J FUNDAM APPL SCI, V9, P1001, DOI 10.4314/jfas.v9i2.25