Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries

被引:52
作者
Ge, Haoyang [1 ]
Xie, Xian [2 ]
Xie, Xuesong [1 ]
Zhang, Bingyao [1 ]
Li, Shenglong [1 ]
Liang, Shuquan [1 ]
Lu, Bingan [3 ]
Zhou, Jiang [1 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Hunan Prov Key Lab Elect Packaging & Adv Funct Mat, Changsha 410083, Peoples R China
[2] City Univ Hong Kong, Dept Mech Engn, Kowloon, Hong Kong 999077, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
GEL POLYMER ELECTROLYTE; DOUBLE-NETWORK HYDROGELS; ION BATTERIES; ELECTROCHEMICAL CHARACTERIZATION; TOUGH HYDROGELS; ENERGY-STORAGE; LITHIUM-SULFUR; PERFORMANCE; DESIGN; ACID;
D O I
10.1039/d4ee00357h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-based batteries are regarded as promising power sources for flexible and wearable electronics due to their merits of low cost, durability, intrinsic safety, satisfactory theoretical energy density, and simple structure. Electrolytes, as a key component of batteries, have been widely investigated with the aim of performance improvement and lifespan extension, and the research trend has shifted from liquid-state toward solid-state for higher stability during deformation and easy fabrication and encapsulation. Quasi-solid-state electrolytes (QSSEs) stand out for mitigating the conflict between electrochemical and mechanical performance. Thus, this review comprehensively reviews the progress of QSSEs (including both hydrogel and colloidal electrolytes), starting from the fundamental properties of QSSE materials with tuning mechanisms summarized, followed by the contribution of QSSEs to the performance of batteries with engineering strategies illustrated, finally extending to modern applications and evaluation protocols with wearable and biocompatible electronics included. So far, the research on functional hydrogel electrolytes is still in its infancy, and the practical application of colloidal electrolytes needs further study. Finally, we summarize those unsolved challenges in current studies and provide guidelines for future research with the hope of accelerating the development and practical application of QSSEs. QSSEs are emerging in aqueous ZBs and modern applications. By summarizing the fundamentals of materials properties, battery performance and applications of QSSEs, this review provides insight into the future development and optimization of ZBs in wider application fields.
引用
收藏
页码:3270 / 3306
页数:37
相关论文
共 256 条
[1]   Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Song, Jinju ;
Kim, Sungjin ;
Islam, Saiful ;
Pham, Duong Tung ;
Jo, Jeonggeun ;
Kim, Seokhun ;
Baboo, Joseph Paul ;
Xiu, Zhiliang ;
Lee, Kug-Seung ;
Sun, Yang-Kook ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2017, 29 (04) :1684-1694
[2]   Studies on the Mechanisms of Anti-Inflammatory Activity of Heparin- and Hyaluronan-Containing Multilayer Coatings-Targeting NF-κB Signalling Pathway [J].
Alkhoury, Hala ;
Hautmann, Adrian ;
Fuhrmann, Bodo ;
Syrowatka, Frank ;
Erdmann, Frank ;
Zhou, Guoying ;
Stojanovic, Sanja ;
Najman, Stevo ;
Groth, Thomas .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (10)
[3]   Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery [J].
Baskoro, Febri ;
Wong, Hui Qi ;
Yen, Hung-Ju .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (06) :3937-3971
[4]   Lithium isotope tracing in silicon-based electrodes using solid-state MAS NMR: a powerful comprehensive tool for the characterization of lithium batteries [J].
Berthault, Manon ;
Buzlukov, Anton ;
Dubois, Lionel ;
Bayle, Pierre-Alain ;
Porcher, Willy ;
Gutel, Thibaut ;
De Vito, Eric ;
Bardet, Michel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (33) :22145-22154
[5]   Uncharted Waters: Super-Concentrated Electrolytes [J].
Borodin, Oleg ;
Self, Julian ;
Persson, Kristin A. ;
Wang, Chunsheng ;
Xu, Kang .
JOULE, 2020, 4 (01) :69-100
[6]   Pathways to tough yet soft materials [J].
Bosnjak, Nikola ;
Silberstein, Meredith N. .
SCIENCE, 2021, 374 (6564) :150-151
[7]   COMPARATIVE-STUDY OF THE SURFACE HYDROXYL-GROUPS OF FUMED AND PRECIPITATED SILICAS .2. CHARACTERIZATION BY INFRARED-SPECTROSCOPY OF THE INTERACTIONS WITH WATER [J].
BURNEAU, A ;
BARRES, O ;
GALLAS, JP ;
LAVALLEY, JC .
LANGMUIR, 1990, 6 (08) :1364-1372
[8]   Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte [J].
Cao, Jin ;
Zhang, Dongdong ;
Yue, Yilei ;
Chanajaree, Rungroj ;
Wang, Shanmin ;
Han, Jiantao ;
Zhang, Xinyu ;
Qin, Jiaqian ;
Huang, Yunhui .
NANO ENERGY, 2022, 93
[9]   Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion [J].
Catt, Kasey ;
Li, Huaxiu ;
Cui, X. Tracy .
ACTA BIOMATERIALIA, 2017, 48 :530-540
[10]   Single-Ion Conducting Double-Network Hydrogel Electrolytes for Long Cycling Zinc-Ion Batteries [J].
Chan, Cheuk Ying ;
Wang, Ziqi ;
Li, Yangling ;
Yu, Hui ;
Fei, Bin ;
Xin, John H. .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (26) :30594-30602